No CrossRef data available.
Published online by Cambridge University Press: 14 July 2016
In recent papers, McLeish and others have obtained invariance principles for weak convergence of martingales to Brownian motion. We generalize these results to prove that solutions of discrete-time stochastic difference equations defined in terms of martingale differences converge weakly to continuous-time solutions of Ito stochastic differential equations. Our proof is based on a theorem of Stroock and Varadhan which characterizes the solution of a stochastic differential equation as the unique solution of an associated martingale problem. Applications to mathematical population genetics are discussed.