Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T08:00:15.374Z Has data issue: false hasContentIssue false

An estimate for the tails of the distribution of the supremum for a class of stationary multiparameter Gaussian processes

Published online by Cambridge University Press:  14 July 2016

E. M. Cabaña
Affiliation:
Universidad Simón Bolívar
M. Wschebor*
Affiliation:
Universidad Simón Bolívar
*
Postal address: División de Fisíca y Matemáticas, Departmento de Matemática y Ciencia de la Computación, Universidad Simón Bolívar, Sartenejas, Baruta, Edo. Miranda, Apartado Postal No. 80.659, Venezuela.

Abstract

Using Slepian processes as a standard of comparison, estimates are given for the probability that a centered multiparameter stationary Gaussian process reaches a constant barrier u on a subset of the parameter domain.

Type
Short Communications
Copyright
Copyright © Applied Probability Trust 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] CabañA, E. M. (1972) On barrier problems for the vibrating string. Z. Wahrscheinlichkeitsth. 22, 1324.Google Scholar
[2] Cabaña, E. M. and Wschebor, M. (1969) On the barrier problem for stationary Gaussian processes. Publ. Inst. Mat. Estadist., Montevideo, Uruguay 4, 123128.Google Scholar
[3] Fernique, X. (1974) Regularité des trajectoires des fonctions aléatoires gaussiennes. In Ecole d'été de St. Flour IV. Lecture Notes in Mathematics 480, Springer-Verlag, Berlin.Google Scholar
[4] Hasofer, A. M. (1978) Upcrossings of random fields. Suppl. Adv. Appl. Prob. 10, 1421.Google Scholar
[5] Kiefer, J. (1961) On large deviations of the empiric d.f. of vector chance variables and a law of the iterated logarithm. Pacific. J. Math. 11, 649660.Google Scholar
[6] Landau, H. J. and Shepp, L. A. (1971) On the supremum of a Gaussian process. Sankhya A 32, 369378.Google Scholar
[7] Marcus, M. B. and Shepp, L. A. (1971) Sample behaviour of Gaussian processes. Proc. 6th Berkeley Symp. Math. Statist. Prob. 2, 423442.Google Scholar
[8] Orey, S. and Pruitt, W. E. (1973) Sample functions of the n-parameter Wiener process. Ann. Prob. 1, 138163.Google Scholar
[9] Plackett, R. L. (1954) A reduction formula for multivariate integrals. Biometrika 41, 351360.Google Scholar
[10] Slepian, D. (1961) First passage time for a particular Gaussian process. Ann. Math. Statist. 32, 610612.Google Scholar
[11] Slepian, D. (1962) The one-sided barrier problem for Gaussian noise. Bell System Tech. J. Monograph No. 4096.Google Scholar
[12] Wschebor, M. (1979) Una demostración geométrica del lema de Plackett–Slepian. Publ. Dept. Mat. y C. Comp., Universidad Simón Bolívar, No. 52.Google Scholar