Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T06:19:05.397Z Has data issue: false hasContentIssue false

An algebraic approach to the waiting time process in GI/M/S

Published online by Cambridge University Press:  14 July 2016

Jacqueline Loris-Teghem*
Affiliation:
Université Libre de Bruxelles∗

Abstract

The transient behaviour of the waiting time process in GI/M/S is studied algebraically by means of a two-dimensional Markovian process {(vn, ln} , where the variables vn denote the times of full occupation immediately after the arrival instants Tn and where ln = max {0,– 1 + number of idle servers at (Tn + 0)}.

Type
Research Papers
Copyright
Copyright © Applied Probability Trust 1973 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kingman, J. F. C. (1966) On the algebra of queues. J. Appl. Prob. 3, 285326.Google Scholar
Loris-Teghem, J. (1971a) On the waiting time distribution in a generalized GI/G/1 queueing system. J . Appl. Prob. 8, 241251.CrossRefGoogle Scholar
Loris-Teghem, J. (1971b) Un traitement algébrique du modèle d'attente GI/M/2. Cah. Centre Et. Rech. Op. 13, 5762.Google Scholar
Loris-Teghem, J. (1973) On the waiting time distribution in some generalized queueing systems. Bull. Soc. Math. Belgique. To appear.Google Scholar
Pollaczek, F. (1961) Théorie analytique des problèmes stochastiques relatifs à un groupe de lignes téléphoniques avec dispositif d'attente. Mémor. Sci. Math. 150.Google Scholar
Wendel, J. G. (1958) Spitzer's formula; a short proof. Proc. Amer. Math. Soc. 9, 905908.Google Scholar