Published online by Cambridge University Press: 14 July 2016
Asymptotic approximations and numerical computations are used to estimate the accuracy of the diffusion approximation for the expected time to extinction for some stochastic processes. The results differ for processes with a continuant transition matrix (e.g. a birth and death process), and those with a noncontinuant transition matrix (e.g. a non-linear branching process). In the latter case, the diffusion equation does not hold near the point of exit. Consequently, high-order corrections do not result in substantial improvement over the diffusion approximation.
Research supported in part by NSERC, Canada, under Grant No. A-9239 and performed in the academic year 1981/82 when the first author was visiting the Department of Mathematics, University of British Columbia.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.