Hostname: page-component-599cfd5f84-v8j7l Total loading time: 0 Render date: 2025-01-07T07:29:08.246Z Has data issue: false hasContentIssue false

Variation for temporary waterlogging response within the mini core pigeonpea germplasm

Published online by Cambridge University Press:  11 August 2011

L. KRISHNAMURTHY*
Affiliation:
International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502 324, Andhra Pradesh, India
H. D. UPADHYAYA
Affiliation:
International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502 324, Andhra Pradesh, India
K. B. SAXENA
Affiliation:
International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502 324, Andhra Pradesh, India
V. VADEZ
Affiliation:
International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502 324, Andhra Pradesh, India
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

Pigeonpea is an important rainfed pulse crop grown in the rainy season that is subject to waterlogging. There are not many sources of waterlogging tolerance available; therefore the mini core pigeonpea germplasm (n=146) were screened, along with a few genotypes already reported to exhibit tolerance. Five trials were conducted starting at 40 and 50 days after sowing (DAS) in 2008, and at 40, 62 and 76 DAS in 2009. The mortality rate in any trial depended on the vapour pressure deficits (VPD) that prevailed during waterlogging and the recovery periods. There were large and highly significant variations due to genotype and to genotype×trial interactions. The heritability of individual trials ranged from 0·27 to 0·75, while it was 0·40 when all the trials were considered together. The survival counts were grouped into representative groups using a hierarchical cluster analysis, which yielded five distinctive groups. The highly tolerant group, with above-average survival means in all five trials, comprised 24 accessions. None of the previously tested or control entries appeared in this group. The sensitive entries comprised 37 accessions including ICP 7035, ICP 8338 and ICP 13562, which were known to be sensitive from previous reports. The tolerant group comprised 39 accessions, moderately tolerant 42 and moderately sensitive 18. Survival during waterlogging and a rapid recovery are considered equally important for categorizing the genotypes and their further use.

Type
Crops and Soils Research Paper
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bartlett, M. S. (1937). Properties of sufficiency and statistical tests. Proceedings of the Royal Statistical Society Series A: Mathematical and Physical Sciences 160, 268282.Google Scholar
Ceccarelli, S., Grando, S., Maatougui, M., Michael, M., Slash, M., Haghparast, R., Rahmanian, M., Taheri, A., Al-Yassin, A., Benbelkacem, A., Labdi, M., Mimoun, H. & Nachit, M. (2010). Plant breeding and climate changes. Journal of Agricultural Science, Cambridge 148, 627637.CrossRefGoogle Scholar
Chauhan, Y. S., Silim, S. N., Kumar Rao, J. V. D. K. & Johansen, C. (1997). A pot technique to screen pigeonpea cultivars for resistance to waterlogging. Journal of Agronomy and Crop Science 178, 179183.CrossRefGoogle Scholar
Cowie, A. L., Jessop, R. S. & Macleod, D. A. (1996). Effects of waterlogging on chickpeas. II. Possible causes of decreased tolerance of waterlogging at flowering. Plant and Soil 183, 105115.CrossRefGoogle Scholar
Davies, C. L., Turner, D. W. & Dracup, M. (2000). Yellow lupin (Lupinus luteus) tolerates waterlogging better than narrow-leafed lupin (L. angustifolius). I. Shoot and root growth in a controlled environment. Australian Journal of Agricultural Research 51, 701709.CrossRefGoogle Scholar
Dickin, E., Bennett, S. & Wright, D. (2009). Growth and yield responses of UK wheat cultivars to winter waterlogging. Journal of Agricultural Science, Cambridge 147, 127140.CrossRefGoogle Scholar
Dubey, S. D. & Asthana, A. N. (1987). Selection of plant type resistance to waterlogging in pigeonpea. In Food Legume Improvement for Asian Farming Systems. Proceedings of an International Workshop held in Khon Kaen, Thailand, 1–5 September 1986 (Eds Wallis, E. S. & Byth, D. E.), p. 311. Canberra, Australia: ACIAR.Google Scholar
FAOSTAT (2002). FAO Production Yearbook 2002. Rome, Italy: FAO. Available online at http://faostat.fao.org/site/339/default.aspx (verified 12 July 2011).Google Scholar
Gibberd, M. R., Colmer, T. D. & Cocks, P. S. (1999). Root porosity and oxygen movement in waterlogging-tolerant Trifolium tomentosum and -intolerant Trifolium glomeratum. Plant, Cell and Environment 22, 11611168.CrossRefGoogle Scholar
Greenwood, D. J., Zhang, K., Hilton, H. W. & Thompson, A. J. (2010). Opportunities for improving irrigation efficiency with quantitative models, soil water sensors and wireless technology. Journal of Agricultural Science, Cambridge 148, 116.CrossRefGoogle Scholar
Heinrichs, D. H. (1972). Root zone temperature effects on flooding tolerance of legumes. Canadian Journal of Plant Sciences 52, 985990.CrossRefGoogle Scholar
Islam, M. R., Hamid, A., Kaliq, Q. A., Ahmed, J. U., Haque, M. M. & Karim, M. A. (2007). Genetic variability in flooding tolerance of mungbean (Vigna radiata L. Wilczek) genotypes. Euphytica 156, 247255.CrossRefGoogle Scholar
Islam, M. R., Hamid, A., Karim, M. A., Haque, M. M., Kaliq, Q. A. & Ahmed, J. U. (2008). Gas exchanges and yield responses of mungbean (Vigna radiata L. Wilczek) genotypes differing in flooding tolerance. Acta Physiologiae Plantarum 30, 697707.CrossRefGoogle Scholar
Kashiwagi, J., Krishnamurthy, L., Upadhyaya, H. D., Krishna, H., Chandra, S., Vadez, V. & Serraj, R. (2005). Genetic variability of drought-avoidance root traits in the mini core germplasm collection of chickpea (Cicer arietinum L.). Euphytica 146, 213222.CrossRefGoogle Scholar
Krishnamurthy, L., Kashiwagi, J., Gaur, P. M., Upadhyaya, H. D. & Vadez, V. (2010). Sources of tolerance to terminal drought in the chickpea (Cicer arietinum L.) mini core germplasm. Field Crops Research 119, 322330.CrossRefGoogle Scholar
Krishnamurthy, L., Gaur, P. M., Basu, P. S., Chaturvedi, S. K., Tripathi, S., Vadez, V., Rathore, A., Varshney, R. K. & Gowda, C. L. L. (2011). Genetic variation for heat tolerance in the reference collection of chickpea (Cicer arietinum L.) germplasm. Plant Genetic Resources: Characterization and Utilization 9, 5969.CrossRefGoogle Scholar
Kumutha, D., Sairam, R. K. & Meena, R. C. (2008). Role of root carbohydrate reserves and their mobilization in imparting waterlogging tolerance in green gram (Vigna radiata (L.) Wilczek) genotypes. Indian Journal of Plant Physiology 13, 339346.Google Scholar
Li, X. (1998). Study on the leaf microstructure of tissue cells from soybean cultivars with different resistance to waterlogged stress. Soybean Science 17, 377380.Google Scholar
Matsunaga, R., Ito, O., Tobita, S., Rao, T. P. & Johansen, C. (1996). Effects of transient waterlogging and nitrogen top-dressing on the shoot and root growth of short-duration pigeonpea. In Dynamics of Roots and Nitrogen in Cropping Systems of the Semi-Arid Tropics (Eds Ito, O., Johansen, C., Adu-Gyamfi, J. J., Katayama, K., Kumar Rao, J. V. D. K. & Rego, T. J.), pp. 273283. JIRCAS International Agriculture Series No. 3. Tsukuba, Japan: Japan International Research Center for Agricultural Sciences (JIRCAS).Google Scholar
Milford, G. F. J., Jarvis, P. J. & Walters, C. (2010). A vernalization-intensity model to predict bolting in sugar beet. Journal of Agricultural Science, Cambridge 148, 127137.CrossRefGoogle Scholar
NATCOM (2003). Construction of climate scenarios for India. NATCOM Newsletter July 2003. Available online at http:// www.natcomindia.org/newsletter/july2003.htm (verified 5 July 2011).Google Scholar
Pande, S., Gaur, P. M., Sharma, M., Rao, J. N., Rao, B. V. & Krishna Kishore, G. (2007). Identification of single and multiple disease resistance in desi chickpea genotypes to Ascochyta blight, Botrytis gray mold and Fusarium wilt. Journal of SAT Agricultural Research 3(1). Available online at: http://www.icrisat.org/journal/chickpea_pigeonpea3.htm (verified 6 July 2011).Google Scholar
Perera, A. M., Pooni, H. S. & Saxena, K. B. (2001). Components of genetic variation in short-duration pigeonpea crosses under waterlogged conditions. Journal of Genetics and Breeding 55, 3138.Google Scholar
Sarode, S. B., Singh, M. N. & Singh, U. P. (2007). Genetics of waterlogging tolerance in pigeonpea [Cajanus cajan (L.) Millsp]. Indian Journal of Genetics and Plant Breeding 67, 264265.Google Scholar
Setter, T. L. & Waters, I. (2003). Review of prospects for germplasm improvement for waterlogging tolerance in wheat, barley and oats. Plant and Soil 253, 134.CrossRefGoogle Scholar
Srivastava, N., Vadez, V., Upadhyaya, H. D. & Saxena, K. B. (2006). Screening for intra and inter specific variability for salinity tolerance in pigeonpea (Cajanus cajan) and its related wild species. Journal of SAT Agricultural Research 2(1). Available online at http://www.icrisat.org/journal/cirpaper1.htm (verified 6 July 2011).Google Scholar
Striker, G. G., Insausti, P., Grimoldi, A. A., Ploschuk, E. L. & Vasellati, V. (2005). Physiological and anatomical basis of differential tolerance to soil flooding of Lotus corniculatus L. and Lotus glaber Mill. Plant and Soil 276, 301311.CrossRefGoogle Scholar
Takele, A. & McDavid, C. R. (1995). The response of pigeonpea cultivars to short durations of waterlogging. African Crop Science Journal 3, 5158.Google Scholar
Upadhyaya, H. D. (2005). Variability for drought resistance related traits in the mini core collection of peanut. Crop Science 45, 14321440.CrossRefGoogle Scholar
Upadhyaya, H. D., Reddy, L. J., Gowda, C. L. L., Reddy, K. N. & Singh, S. (2006). Development of a mini core subset for enhanced and diversified utilization of pigeonpea germplasm resources. Crop Science 46, 21272132.CrossRefGoogle Scholar
Vadez, V., Krishnamurthy, L., Serraj, R., Gaur, P. M., Upadhyaya, H. D., Hoisington, D. A., Varshney, R. K., Turner, N. C. & Siddique, K. H. M. (2007). Large variation in salinity tolerance in chickpea is explained by differences in sensitivity at the reproductive stage. Field Crops Research 104, 123129.CrossRefGoogle Scholar
Vantoai, T. T., Beuerlein, J. E., Schmitthenner, A. F. & St. Martin, S. K. (1994). Genetic variability for flooding tolerance in soybeans. Crop Science 34, 11121115.CrossRefGoogle Scholar
Whiteman, P. C., Seitlheko, M., Siregar, M. E., Chudasama, A. K. & Javier, R. R. (1984). Short-term flooding tolerance of seventeen commercial tropical pasture legumes. Tropical Grasslands 18, 9196.Google Scholar