Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-05T14:01:56.133Z Has data issue: false hasContentIssue false

Urinary excretion of allantoin and allantoin precursors by sheep after different rates of purine infusion into the duodenum

Published online by Cambridge University Press:  27 March 2009

J. Balcells
Affiliation:
Departamento de Production Animal y Ciencia de los Alimentos, Facultad Veterinaria, Miguel Servet 177, Zaragoza 50013, Spain
J. A. Guada
Affiliation:
Departamento de Production Animal y Ciencia de los Alimentos, Facultad Veterinaria, Miguel Servet 177, Zaragoza 50013, Spain
C. Castrillo
Affiliation:
Departamento de Production Animal y Ciencia de los Alimentos, Facultad Veterinaria, Miguel Servet 177, Zaragoza 50013, Spain
J. Gasa
Affiliation:
Departamento de Production Animal y Ciencia de los Alimentos, Facultad Veterinaria, Miguel Servet 177, Zaragoza 50013, Spain

Summary

Two experiments were carried out to determine endogenous losses and the response of urinary purine derivatives to increased duodenal inputs of purine bases. Four ewes each fitted with a re-entrant cannula at the proximal duodenum, and conventionally fed, were subjected to full replacement of duodenal digesta followed by the administration of a solution either free of purines (Expt 1) or enriched with increasing amounts of purines, to supply 0·48–21·27 mmol/animal per day (Expt 2). Basal daily urinary excretions of allantoin, uric acid, hypoxanthine and xanthine were 11·5 ± 0·94, 9·9 ± 0·67, 6·9 ± 0·46 and 1·2 ±0·16 mg/kg W0·75. Allantoin was the only purine derivative which increased in response to incremental inputs of duodenal purines. The relationship between allantoin excretion and infused purines showed a urinary recovery of 0·8 for purines infused at > 220 μmol/kg W0·76. Lower rates of infusion did not alter allantoin excretion. The results show urinary allantoin to be a useful index to estimate duodenal input of purines when animals are fed close to or above their energy maintenance requirements.

Type
Animals
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agricultural Research Council (1980). The Nutrient Requirements of Ruminant Livestock. Slough: Commonwealth Agricultural Bureaux.Google Scholar
Al-Khalidi, U. A. S. & Chaglassian, T. H. (1965). The species distribution of xanthine oxidase. Biochemical Journal 97, 318320.CrossRefGoogle ScholarPubMed
Antoniewicz, A. M., Heinemann, W. W. & Hanks, E. M. (1980). The effect of changes in the intestinal flow of nucleic acids on allantoin excretion in the urine of sheep. Journal of Agricultural Science, Cambridge 95, 395400.CrossRefGoogle Scholar
Antoniewicz, A. M., Heinemann, W. W. & Hanks, E. M. (1981). Effect of level of feed intake and body mass on allantoin excretion and the allantoin to creatinine ratio in the urine of sheep. Roczniki Naukowe Zootechniki T 8, 4965.Google Scholar
Antoniewicz, A. M. & Pisulewski, P. M. (1982). Measurement of endogenous allantoin excretion in sheep urine. Journal of Agricultural Science, Cambridge 98, 221223.CrossRefGoogle Scholar
Antoniewicz, A. M. (1983). Allantoin in urine as indicator of rumen development in lambs. Roczniki Naukowe Zootechniki T 10, 181190.Google Scholar
Carriedo, J. A., Gil, A. & San Primitivo, F. (1978). Ajuste lineal con puntos singulares por metodos iterativos de aplicacion biologica. Anales de la Facultad de Veterinaria de Leon 24, 139148.Google Scholar
Chen, X. B., Ørskov, E. R. & Hovell, F. D. DeB (1990 a). Excretion of purine derivatives by ruminants endogenous excretion, differences between cattle and sheep. British Journal of Nutrition 63, 121129.CrossRefGoogle ScholarPubMed
Chen, X. B., Hovell, F. D. DeB, Ørskov, E. R. & Brown, D. S (1990 b). Excretion of purine derivatives by ruminants: effect of exogenous nucleic acid supply on purine derivative excretion by sheep. British Journal of Nutrition 63, 131142.CrossRefGoogle ScholarPubMed
Chen, X. B., Hovell, F. D. DeB, & Ørskov, E. R. (1990 C). Excretion of purine derivatives by ruminants: recycling of allantoin into rumen via saliva and its fate in the gut. British Journal of Nutrition 63, 197205.CrossRefGoogle ScholarPubMed
Condon, R. J. & Hatfield, E. E. (1970). Metabolism of abomasally infused ribonucleic acid by sheep. Journal of Animal Science 31, 1037 (abstract).Google Scholar
Elliott, R. C. & Topps, J. H. (1963). Nitrogen metabolism of African cattle fed diets with an adequate energy, low protein content. Nature 197, 668670.CrossRefGoogle Scholar
Ellis, W. C. & Bleichner, K. C. (1969). Apparent utilization of absorbed purines by sheep. Journal of Animal Science 29, 157 (abstract).Google Scholar
Fujihara, T., Ørskov, E. R., Reeds, P. J. & Kile, D. J. (1987). The effect of protein infusion on urinary excretion of purine derivatives in ruminants nourished by intragastric nutrition. Journal of Agricultural Science, Cambridge 109, 712.CrossRefGoogle Scholar
Glesecke, D., Stangassinger, M. & Tiemeyer, W. (1984). Nucleic acid digestion and urinary purine metabolites in sheep nourished by intragastric infusion. Canadian Journal of Animal Science 64, Supp l., 144145.CrossRefGoogle Scholar
Ivan, M. & W, Johnston D.. (1981). Re-entrant cannulation of the small intestine in sheep: cannula and surgical method. Journal of Animal Science 52, 848856.CrossRefGoogle Scholar
Kaplan, V. A. & Pobirsky, N. N. (1974). Specificity of purinic metabolism in ruminants. Set'skokhozyaistvennaya Biologiya 9, 9194.Google Scholar
Laurent, F. & Vignon, B. (1979). Variation de l'excretion urinarie d'azote total, d'urée el d'allantoine chez le mouton et chez le bouc. Bulletin de FENSAIA de Nancy 21, 115124.Google Scholar
Laurent, F., Brun-Bellut, J. & Vignon, B. (1986). Teneur en ARN du jus de rumen et du contenu de duodenum. Reproduction Nutrition Développement 26, 317318.CrossRefGoogle Scholar
Lindberg, J. E. (1985). Urinary allantoin excretion and digestible organic matter intake in dairy goats. Swedish Journal of Agricultural Research 15, 3137.Google Scholar
Lindberg, J. E. (1989). Nitrogen metabolism and urinary excretion of purines in goat kids. British Journal of Nutrition 61, 309321.CrossRefGoogle ScholarPubMed
Marquardt, D. W. (1963). An algorithm for least-square estimation of non-liner parameters. Journal of the Society of Industrial and Applied Mathematics 11, 431441.CrossRefGoogle Scholar
McAllan, A. B. (1982). The fate of nucleic acids in ruminants. Proceedings of the Nutrition Society 41, 309317.CrossRefGoogle ScholarPubMed
McAllan, A. B. & Smith, R. H. (1973). Degradation of nucleic acid derivatives by rumen bacteria in vitro. British Journal of Nutrition 29, 467474.CrossRefGoogle ScholarPubMed
Ørskov, E. R. & McLeod, N. A. (1982). The determination of the minimal nitrogen excretion in steers and dairy cows and its physiological and practical implications. British Journal of Nutrition 47, 625635.CrossRefGoogle ScholarPubMed
Roth, F. H. & Kirchgessner, M. (1980). Contribution of dietary nucleic acids to the N metabolism. Proceedings of 3rd EA A P Symposium on Protein Metabolism and Nutrition 27 (Eds Oslage, H. J. & Rohr, K.), pp. 120134. Braunschweig: Institute of Animal Nutrition FAL.Google Scholar
Rowell, J. G. & Walters, D. E. (1976). Analysing data with repeated observations on each experimental unit. Journal of Agricultural Science, Cambridge 87, 423432.CrossRefGoogle Scholar
Rys, R., Antoniewicz, A. & Maciejewicz, J. (1975). Allantoin in urine as an index of microbial protein in the rumen. In Tracer Studies on Non-protein Nitrogen in Ruminants, vol. 2, pp. 9598. Vienna: IAEA.Google Scholar
Schweinsberg, P. D. & Loo, Ti Li, (1980). Simultaneous analysis of ATP, ADP, AMP, and other purines in human erythrocytes by high-performance liquid chromatography. Journal of Chomatography 181, 103107.CrossRefGoogle ScholarPubMed
Sibanda, S., Topps, J. H., Storm, E. & Ørskov, E. R. (1982). The excretion of allantoin by ruminants in relation to protein entering the abomasum. Proceedings of the Nutrition Society 41, 75A.Google Scholar
Steel, R. G. & Torrie, H.J. (1960). Principles and Procedures Statistics. New York: McGraw-Hill.Google Scholar
Storm, E. & Ørskov, E. R. (1983). The nutritive value of rumen micro-organisms in ruminants. British Journal of Nutrition 50, 463470.CrossRefGoogle ScholarPubMed
Technicon Instruments Co. (1977). Technicon SMA II Method No. SD4-00118k7. Tarrytown, NY: Technicon Instruments.Google Scholar
Technicon Instruments Co. (1980). Technicon SMA II Method No. SD4-0054FBO. Tarrytown, NY: Technicon Instruments.Google Scholar
Topps, J. H. & Elliott, R. C. (1965). Relationship between concentration of ruminal nucleic acids and excretion of purine derivatives by sheep. Nature 205, 498499.CrossRefGoogle Scholar
Vercoe, J. E. (1976). Urinary allantoin excretion and digestible dry-matter intake in cattle and buffalo. Journal of Agricultural Science, Cambridge 86, 613615.CrossRefGoogle Scholar
Young, E. G. & Conway, C. F. (1942). On the estimation of allantoin by the Rimini-Schryver reaction. Journal of Biological Chemistry 142, 839852.CrossRefGoogle Scholar
Zollner, N. (1982). Purine and pyrimidine metabolism. Proceedings of the Nutrition Society 41, 329342.CrossRefGoogle ScholarPubMed