Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T16:44:23.688Z Has data issue: false hasContentIssue false

Symbiotic nitrogen fixation efficiency of mutant strains of lentil (Lens esculenta) Rhizobium growing from pH 4·5 to 7·5

Published online by Cambridge University Press:  27 March 2009

R. Rai
Affiliation:
Dholi Campus, Rajendra Agricultural University, Dholi (Muzaffarpur), Bihar, India
V. Prasad
Affiliation:
Dholi Campus, Rajendra Agricultural University, Dholi (Muzaffarpur), Bihar, India
T. N. Prasad
Affiliation:
Dholi Campus, Rajendra Agricultural University, Dholi (Muzaffarpur), Bihar, India
S. B. Kumar
Affiliation:
Dholi Campus, Rajendra Agricultural University, Dholi (Muzaffarpur), Bihar, India
B. S. Srivastava
Affiliation:
Division of Microbiology, Central Drug Research Institute (Lucknow), U. P., India

Summary

A strain of Rhizobium isolated from the root nodule of lentil was caused to produce mutants and screened on a medium of pH 4·5. Five mutant colonies of Rhizobium were isolated from lentil which differed in growth over a pH range 4·5–7·5. Strains differed in their growth in acidic and calcareous soils and also in their effectiveness of N fixation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, O. N. (1957). Experiments in Soil Bacteriology. Minnesota, U. S. A.: Burgess Publishing Co.Google Scholar
Beringer, J. E. (1974). R-factor transfer in Rhizobium leguminosarum. Journal of General Microbiology 84, 188198.Google ScholarPubMed
Dart, P. J. (1975). Most symbiotic relationship in nodule development and nitrogen fixation. Biology of Nitrogen Fixation in Farming Systems of the Tropics (ed. Ayanaba, A. and Dart, P. J.), pp. 151152. New York: John Wiley.Google Scholar
Date, R. A. & Halliday, J. (1979). Selecting Rhizobium for acid infertile soil of the tropics. Nature 277, 6264.CrossRefGoogle Scholar
Evans, H. J., Ruiz Argueso, T., Jennings, N. T. & Hanus, J. (1977). Energy coupling efficiency of symbiotic nitrogen fixation. Genetic Engineering of Nitrogen Fixation (ed. Hollander, A.), pp. 333354. New York: Plenum Press.CrossRefGoogle Scholar
Jackson, M. L. (1967). Soil Chemical Analysis. India: Prentice Hall.Google Scholar
Kondorosi, A., Svab, Z., Kiss, G. B. & Dixon, A. R. (1977). Circular linkage map of R. meliloti chromosome. Nature 268, 525527.CrossRefGoogle Scholar
Mair, R. J. & Brill, W. J. (1978). Mutant strains of R. japonicum with increased ability to fix nitrogen for soybean. Science 201, 448450.CrossRefGoogle Scholar
Meede, H. N. & Brill, W. J. (1976). Ineffective and non-nodulating mutants of Rhizobium japonicum. Journal of Bacteriology 127, 763769.Google Scholar
Munns, D. N. (1976). Soil acidity and related factors. Exploiting the legume - Rhizobium symbiosis in tropical agriculture. Proceedings of a workshop, 08 1976. University of Hawaii, NifTAL Project, U. S. A., pp. 211236.Google Scholar
Rai, R., Singh, S. N. & Prasad, V. (1980). Response of Rhizobium strains to chick pea (Cicer arietinum) Linn., genotypes in calcareous soil. National Symposium on Biological N2fixation in relation to Crop Production, December 2931, 1980., Agricultural Microbiology Department, T. N. A. University, Coimbatore.Google Scholar
Vincent, J. M. & Humphrey, B. (1970). Taxonomically significant group antigenes in rhizobia. Journal of General Microbiology 63, 379382.CrossRefGoogle Scholar
Whitney, A. S. (1979). A summary of recent research and training activity at the Nif TAL Project. In Planning an International Network of Legume Inoculation Trial, pp. 104111. C. T. A. and H. R. University of Hawaii.Google Scholar