Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-03T18:10:05.513Z Has data issue: false hasContentIssue false

A study of some methods at present used for the determination of lignin

Published online by Cambridge University Press:  27 March 2009

Brynmor Thomas
Affiliation:
King's College, Newcastle upon Tyne
D. G. Armstrong
Affiliation:
King's College, Newcastle upon Tyne

Extract

1. Methods for the determination of lignin which involve the use of 72% sulphuric acid have been reviewed.

2. Three methods in common use, viz. those of Norman & Jenkins (modified Common), Crampton & Maynard (modified Lancaster) and of Ellis, Matrone & Maynard were studied, and comparisons made of their relative effectiveness.

3. That of Crampton & Maynard was considered less satisfactory than the modified Norman & Jenkins procedure, on the grounds that it contains several sources of error, the most serious of which are the use of formaldehyde and the failure to remove pentosans.

4. The yields of lignin obtained with the method of Ellis, Matrone & Maynard are appreciably higher than those resulting from the modified method of Norman & Jenkins, by reason of the failure to use a protein correction factor. When such a correction is made, results from the two methods are comparable.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1949

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Armitage, E. R., Ashwokth, R. B. & Ferguson, W. S. (1948). J. Soc. Chem. Ind., Lond., 67, 241.CrossRefGoogle Scholar
Bamford, K. F. & Campbell, W. G. (1936). Biochem. J. 30, 419.CrossRefGoogle Scholar
Barton, Wright E. C. (1946). Analyst, 71, 267.CrossRefGoogle Scholar
Benedikt, R. & Bamburgher, P. (1890). Monatsh. Math. Phys. 1, 260.Google Scholar
Bondi, A. & Meyer, H. (1948). Biochem. J. 43, 248.CrossRefGoogle Scholar
Bray, M. W. (1928). Paper Tr. J. 87, 59.Google Scholar
Cohen, W. E. & Harris, E. E. (1937). Industr. Engng Chem. 9, 234.Google Scholar
Common, R. H. (1946). Personal communication.Google Scholar
Crampton, E. W. & Maynard, W. A. (1938). J. Nutrit. 15, 383.CrossRefGoogle Scholar
Davis, R. E. & Miller, C. O. (1939). Industr. Engng. Chem. (Anal, , ed.), 11, 651.Google Scholar
Dent, C. E. (1948). Biochem. J. 43, 169.CrossRefGoogle Scholar
Ellis, G. H., Matrone, G. & Maynard, L. A. (1946). J. Anim. Sci. 5, 285.CrossRefGoogle Scholar
Friedrich, A. & Drwald, J. (1925). Monatsh. Math. Phys. 46, 31.Google Scholar
Goss, M. J. & Phillips, M. (1936). J. Ass. Off. Agric. Chem., Wash., 19, 341.Google Scholar
Hägglund, E. & Rosenquist, T. (1926). Biochem. Z. 179, 376.Google Scholar
Harris, E. E. & Mitchell, R. L. (1939). Industr. Engng. Chem. (Anal, , ed.), 11, 153.Google Scholar
Kalb, L. & Lieser, T. (1928). Ber. dtsch. chem. Ges. 61, 1007.CrossRefGoogle Scholar
Karrer, P. (1947). Textbook of Organic Chemistry, p. 288. London: Elsevier Publishing Co. Inc.Google Scholar
Lancaster, R. L. (1943). N.Z. J. Sci. Tech. 25 A, 137.Google Scholar
MacDougall, D. & Delong, W. E. (1942). Canad. J. Res. 20, A, B, 40.CrossRefGoogle Scholar
Mehta, M. M. (1925). Biochem. J. 19, 958.CrossRefGoogle Scholar
Norman, A. G. (1937a). The Biochemistry of Cellulose, the Polyuronides, Lignin, etc., London: Oxford University Press.Google Scholar
Norman, A. G. (1937b). Biochem. J. 31, 1567.CrossRefGoogle Scholar
Norman, A. G. & Jenkins, S. H. (1934a). Biochem. J. 28, 2147.CrossRefGoogle Scholar
Norman, A. G. & Jenkins, S. H. (1934b). Biochem. J. 28, 2160.CrossRefGoogle Scholar
Official and Tentative Methods of Analysis of the A.O.A.C. (1935), p. 140.Google Scholar
Ost, H. & Wilkening, L. (1910). Chem. Ztg, 34, 461.Google Scholar
Paloheimo, L. (1925). Biochem. Z. 165, 463.Google Scholar
Phillips, M. (1932). J. Ass. Off. Agric. Chem, Wash., 15, 124.Google Scholar
Phillips, M. (1934). Chem. Rev. 14, 103.CrossRefGoogle Scholar
Raymond, W. F. (1949). Private communication.Google Scholar
Ritter, C. J., Seborg, R. M. & Mitchell, R. L. (1932). Industr. Engng. Chem. (Anal, , ed.), 4, 202.Google Scholar
Ross, J. H. & Hill, A. C. (1929). Pulp Pap. (Mag.) Can. 27, 541.Google Scholar
Ross, J. H. & Potter, J. C. (1930). Pulp Pap. (Mag.) Can. 29, 567.Google Scholar
Sherrard, E. C. & Harris, E. E. (1932). Industr. Engng Chem. 24, 103.CrossRefGoogle Scholar
Thomas, B. & Ibbotson, C. F. (1947). J. Agric. Sci. 37, 58.CrossRefGoogle Scholar
Urban, H. (1926). Cellulose-Chem. 7, 73.Google Scholar
Waksman, S. A. & Stevens, K. R. (1930). Industr. Engng Chem. (Anal, , ed.) 2, 167.Google Scholar
Williams, R. D. & Olmstead, W. H. (1935). J. Biol. Chem. 108, 653.CrossRefGoogle Scholar
Willstätter, R. & Kalb, L. (1922). Ber. dtsch. chem. Ges. 55, 2637.CrossRefGoogle Scholar
Willstätter, R. & Zechmeister, L. (1913). Ber. dtsch. chem. Ges. 46, 2401.CrossRefGoogle Scholar