Hostname: page-component-599cfd5f84-5kswg Total loading time: 0 Render date: 2025-01-07T07:14:46.374Z Has data issue: false hasContentIssue false

Studies on the nutritive value of some common Egyptian feedingstuffs. I. Nitrogen retention and ruminal ammonia curves

Published online by Cambridge University Press:  27 March 2009

K. El-Shazly
Affiliation:
Faculty of Agriculture, Alexandria University

Extract

1. Ten successive trials with two Rahmany adult ewes were carried out with the aim of comparing the nutritive values of the nitrogenous constituents of some concentrates used in Egypt as supplements in summer rations (decorticated cottonseed cake, linseed-oil meal and beans (Vicia faba)) and of animal proteins (meat meal, fish meal and casein) and of barseem (Trifolium alexandrinum). Wheat straw was employed as the main roughage in the ration. Nitrogen intake for all supplements was 10·16 g./day.

2. Apparent digestion coefficients for crude protein were estimated. Casein had the highest digestibility coefficient while meat meal was the least digestible.

3. Nitrogen retention and ruminal ammonia curves are given for each period. Only three proteins, namely, barseem, cottonseed cake and linseed meal gave positive nitrogen balance at the critical level of nitrogen intake used throughout the trials. Fish meal improved nitrogen retention significantly. Meat meal and beans did not improve nitrogen retention. The addition of 70 g. starch to beans improved nitrogen retention significantly.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1958

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abou Akkada, A. B. (1957). M.Sc. thesis submitted to the University of Alexandria.Google Scholar
Abou Akkada, A. R. & el-Shazly, K. (1958). J. Agric. Sci. (in the Press).Google Scholar
Annison, E. F., Chalmers, M. I., Marshall, S. B. M. & Synge, R. L. M. (1954). J. Agric. Sci. 44, 270.CrossRefGoogle Scholar
Bisset, S. K. (1954). Biochem. J. 58, 225.CrossRefGoogle Scholar
Brohult, S. & Sandegren, E. (1954). The Proteins, 2, A, 487. Ed. Neurath, H. and Bailey, K.Google Scholar
Bryant, M. P. (1951). J. Anim. Sci. 10, 1042.Google Scholar
Bryant, M. P. & Doetsch, B. N. (1955). J. Dairy Sci. 38, 346.CrossRefGoogle Scholar
Chalmers, M. I., Cuthbertson, D. P. & Synge, R. L. M. (1954). J. Agric. Sci. 44, 254.CrossRefGoogle Scholar
Chalmers, M. I. & Synge, R. L. M. (1954 a). J. Agric. Sci. 44, 263.CrossRefGoogle Scholar
Chalmers, M. I. & Synge, B. L. M. (1954 b). Advanced Prot. Chem. 9, 93.Google Scholar
Chibnall, A. C., Rees, M. W. & Williams, E. F. (1943). Biochem. J. 37, 354.CrossRefGoogle Scholar
Conway, E. J. & O'Mally, E.(1942). Biochem. J. 36, 655.CrossRefGoogle Scholar
el Tabey, Shehata (1958). J. Appl. Microbiol. (in the Press).Google Scholar
Gall, L. S., Burroughs, W., Gerlaugh, P. & Edgington, B. H. (1946). J. Anim. Sci. 8, 433.CrossRefGoogle Scholar
Gray, F. V., Pilgbim, A. F. & Weller, R. A. (1953). Nature, Lond., 172, 347.CrossRefGoogle Scholar
Hamilton, T. S., Robinson, W. B. & Johnson, B. C. (1948). J. Anim. Sci. 7, 26.CrossRefGoogle Scholar
Hastings, E. G. (1944). Bact. Rev. 8, 235.CrossRefGoogle Scholar
Head, M. J. & Rook, I. A. F. (1955). Nature, Lond., 176, 262.CrossRefGoogle Scholar
Huffman, C. F. (1953). Ann. Rev. Biochem. 22, 399.CrossRefGoogle Scholar
Johnson, B. C., Hamilton, T. S., Robinson, W. B. & Garey, J. C. (1944). J. Anim. Sci. 3, 287.CrossRefGoogle Scholar
Jordan, R. M., Klosterman, E. W. & Wilson, J. W. (1949). J. Anim. Sci. 8, 823.Google Scholar
Klosterman, E. W., Buchanan, N. L., Bolin, D. W. & Bolin, F. M. (1951). J. Anim. Sci. 10, 257.CrossRefGoogle Scholar
Lloyd, L. E., Peokhan, H. E. & Crampton, E. W. (1956). J. Anim. Sci. 15, 846.CrossRefGoogle Scholar
Markham, R. (1942). Biochem. J. 36, 790.CrossRefGoogle Scholar
Morris, S. & Wright, N. C. (1935). J. Dairy Res. 6, 289.CrossRefGoogle Scholar
McAnally, R. A. (1944). J. Exp. Biol. 20, 130.CrossRefGoogle Scholar
McDonald, I. W. (1948). Biochem. J. 42, 584.CrossRefGoogle Scholar
McDonald, I. W. (1952). Biochem. J. 51, 86.CrossRefGoogle Scholar
McDonald, I. W. (1954). Biochem. J. 56, 120.CrossRefGoogle Scholar
McNaught, M. L. & Smith, J. A. B. (1947). Nutr. Abstr. Rev. 17, 18.Google Scholar
Official Methods of Analysis of the Association of Official Agricultural Chemists, 1950.Google Scholar
Pearson, R. M. & Smith, J. A. B. (1943). Biochem. J. 37, 153.CrossRefGoogle Scholar
Phillipson, A. T. & Cuthbertson, D. P. (1956). VII International Congress of Animal Husbandry, pp. 185.Google Scholar
el-Shazly, K. (1952). Biochem. J. 51, 647.CrossRefGoogle Scholar
Slen, S. B. & Whiting, F. (1955). J. Anim. Sci. 14, 844.CrossRefGoogle Scholar
Snedecor, G. W. (1955). Statistical Methods Applied to Experiments in Agriculture and Biology, p. 214.Google Scholar
Sym, E. A. (1938). Acta Biol. Exp., Varsovie, 12, 192.Google Scholar
Sym, E. A., Stankiewicz, W. & Zielinski, F. (1939). Enzymologia, 6, 113.Google Scholar
Synge, R. L. M. (1951). Biochem. J. 49, 642.CrossRefGoogle Scholar
Turner, C. W. (1945). Amer. Miller Processor, 73, (3) 48.Google Scholar
Warner, A. C. I. (1956). J. gen. Microbiol. 14, 749.CrossRefGoogle Scholar
Williams, V. J. & Moir, R. J. (1951). Aust. J. Sci. Res. B, 4, 377.Google Scholar
Williams, V. J., Nottle, M. C., Moir, R. J. & Underwood, E. J. (1953). Aust. J. Biol. Sci. 6, 142.CrossRefGoogle Scholar