Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-21T21:56:04.053Z Has data issue: false hasContentIssue false

Studies on soil reaction. II. The colorimetric determination of the hydrogen ion concentration in soils and aqueous soil extracts (Preliminary communication.)

Published online by Cambridge University Press:  27 March 2009

E. A. Fisher
Affiliation:
Rothamsted Experimental Station (Lawes Agricultural Trust)

Extract

The methods used for the determination of — log [] fall naturally into two groups:

(a) Electrometric, and

(b) Colorimetrie methods.

Electrometric methods were first introduced into analytical practice in 1897 by Böttger(l) who determined the neutral point in titrating acids with alkalis by using a gas chain; subsequent improvements were made by Hildebrand (16), Gumming and Gilchrist(10); Hasselbalch(15), W. M. Clark(6), Michaelis(19), Walpole(28, 29) and others. The method has been applied to the measurement of [] of biological fluids with considerable success*. It was first applied to the measurement of [] of soil suspensions by G. Fischer (12) in Germany in 1914 and subsequently in America by Sharp and Hoagland(23), and by Gillespie(13, 14) and his co-workers.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1921

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Böttger, W.Zeit. phys. Chemie, 24 (1897), p. 253.Google Scholar
(2)Bourdillon, R. B.J.C.S., 103 (1913), p. 791.Google Scholar
(3)Bovie, . J. Med. Res., 33 (1915), p. 295.Google Scholar
(4)Brightman, C. L., Meacham, M. R. and Acree, S. F.J. Bact., 5 (1920), p. 169.CrossRefGoogle Scholar
(5)Bbown, P. E. and Johnson, H. W.J. Amer. Soc. Agron., 7 (1915), p. 216.Google Scholar
(6)Clark, W. M.J. Biol. Chem., 23 (1915), p. 475.Google Scholar
(7)Clark, W. M. and Lubs, H. A.J. Biol. Chem., 25 (1916), p. 479.Google Scholar
(8)Clark, W. M. and Lubs, H. A.J. Bact., 2 (1917), pp. 1, 109, 191.Google Scholar
(9)Cook, R. C.Soil Sci., 1 (1916), p. 95.Google Scholar
(10)Gumming, A. C. and Gilchrist, D.Trans. Far. Soc., 9 (1913), p. 174.CrossRefGoogle Scholar
(11)Dodge, F. D.J. Ind. and Eng. Chem., 7 (1915), p. 29.Google Scholar
(12)Fischer, G.Kühn-Archiv (Halle), 4 (1914), p. 1.Google Scholar
(13)Gillespie, L. J.J. Wash. Acad. Sci., 6 (1916), p. 7.Google Scholar
(14)Gillespie, L. J. and Hurst, L. A.Soil Sci., 4 (1916), p. 313;, 6 (1918), p. 219.CrossRefGoogle Scholar
(15)Hasselbalch, K. A.Biochem. Zeitschr., 30 (1911), p. 317;, 49 (1913), p. 451.Google Scholar
(16)Hildebrand, J. H.J. Amer. Chem. Soc., 35 (1913), p. 847.Google Scholar
(17)Knight, H. G.J. Ind. and Eng. Chem., 12 (1920), pp. 340, 457, 559.CrossRefGoogle Scholar
(18)Lubs, H. A. and Clark, W. M.J. Wash. Acad. Sci., 5 (1915), p. 609;, 6 (1916), p. 481.Google Scholar
(19)Michaelis, L.Die Wasserstoffionen-Konzentration, J. Springer (Berlin), 1914.Google Scholar
(20)Michaelis, L. and Rona, P.Biochem. Zeitschr., 23 (1909), p. 61.Google Scholar
(21)Palitzsch, S.Biochem. Zeitschr., 70 (1915), p. 333.Google Scholar
(22)Rice, F. E. and Osugi, S.Soil Sci., 5 (1918), p. 333.Google Scholar
(23)Sharp, L. T. and Hoagland, D. R.J. Agric. Res., 7 (1916), p. 123.Google Scholar
(24)Sörensen, S. P. L.Biochem. Zeitschr., 21 (1909), pp. 131, 201.Google Scholar
(25)Sörensen, S. P. L.Compt. rend. Lab. Carlsberg, 7 (1909), pp. 1, 396.Google Scholar
(26)Sörensen, S. P. L.Ergeb. der Physiol., 12 (1912), p. 393.Google Scholar
(27)Sörensen, S. P. L. and Palitzsch, S.Biochem. Zeitschr., 51 (1913), p. 307.Google Scholar
(28)Walpole, G. S.Biochem. J., 5 (1910), p. 207;, 7 (1913), p. 260;, 8 (1914), p. 628.Google Scholar
(29)Walpole, G. S.J. C. S., 106 (1914), pp. 2501, 2521.Google Scholar