Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-03T19:13:53.509Z Has data issue: false hasContentIssue false

Studies on soil organic matter: Part I. The chemical nature of soil organic nitrogen

Published online by Cambridge University Press:  27 March 2009

J. M. Bremner
Affiliation:
Chemistry Department, Rothamsted Experimental Station, Harpenden, Herts

Extract

1. The acid hydrolysis of six soils with nitrogen contents ranging from 0·1 to 2·38% has been studied by determining the amounts of ammonia-, humin- and α-amino-N present in the soil hydrolysates after various periods of hydrolysis.

2. Under the conditions of hydrolysis employed (3 ml. of 6N-HCl/g. soil) the period required for maximum liberation of amino-acids from the soils was about 12 hr. 24·2–37·1% of the total-nitrogen of the soils examined was liberated as α-amino-N in this period. Further hydrolysis led to destruction of amino-acids. Similar amounts of α-amino-N were liberated by hydrolysis of the soils with alkali (5N-NaOH).

3. From 69 to 87% of the total-nitrogen of the soils was brought into solution by acid hydrolysis; the amount dissolved by hydrolysing with alkali or with alkali under reducing conditions (alkalistannite) was not significantly different. It is concluded that most of the insoluble-nitrogen found after acid hydrolysis is not derived from protein material, and it is suggested that some of this nitrogen is in the form of heterocyclic nitrogen compounds.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1949

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bottomley, W. B. (1919). Proc. Roy. Soc. B, 90, 39.Google Scholar
Chaeitschkov, K. V. (1906). J. Soc. phys.-chim. russe, 7, 1067.Google Scholar
Conway, E. J. & O'Malley, E. (1942). Biochem. J. 36, 655.CrossRefGoogle Scholar
Fischer, E. & Zach, K. (1911). Ber. dtsch. chem. Ges. 44, 132.CrossRefGoogle Scholar
Gortner, R. A. (1913). J. Amer. Chem. Soc. 35, 632.CrossRefGoogle Scholar
Graff, S. & Maculla, A. (1935). J. Biol. Chem. 110, 71.CrossRefGoogle Scholar
Hausmann, W. (1899). Hoppe-Seyl. Z. 27, 95.CrossRefGoogle Scholar
Hlaziwetz, H. & Habermann, J. (1873). Liebigs Ann. 169, 150.CrossRefGoogle Scholar
Hobson, R. P. & Page, H. J. (1932 a). J. Agric. Sci. 22, 297.CrossRefGoogle Scholar
Hobson, R. P. & Page, H. J. (1932 b). J. Agric. Sci. 22, 497.CrossRefGoogle Scholar
Hobson, R. P. & Page, H. J. (1932 c). J. Agric. Sci. 22, 516.CrossRefGoogle Scholar
Jodidi, S. L. (1911). J. Amer. Chem. Soc. 33, 1226.Google Scholar
Jodidi, S. L. (1912). J. Amer. Chem. Soc. 34, 94.CrossRefGoogle Scholar
Kellky, W. P. & Thompson, A. R. (1914 a). J. Amer. Chem. Soc. 36, 438.CrossRefGoogle Scholar
Kelley, W. P. & Thompson, A. R. (1914 b). Bull. Hawaii Agric. Exp. Sta. no. 33.Google Scholar
Kojima, R. T. (1947 a). Soil Sci. 64, 157.CrossRefGoogle Scholar
Kojima, R. T. (1947 b). Soil Sci. 64, 245.CrossRefGoogle Scholar
Lathrop, E. C. (1916). Soil Sci. 1, 509.CrossRefGoogle Scholar
Lathrop, E. C. & Brown, B. E. (1911). J. Industr. Engng Chem. 3, 657.CrossRefGoogle Scholar
Lugg, J. W. H. (1938). BioChem. J. 32, 775.Google Scholar
Lugg, J. W. H. (1946). Biochem. J. 40, 88.Google Scholar
Markham, R. (1942). Biochem. J, 36, 790.Google Scholar
Mellan, I. (1941). Organic Reagents in Inorganic Analysis. Philadelphia: Blakiston.Google Scholar
Meyer, K. (1945). Advances in Protein Chemistry, 2. New York: Academic Press.Google Scholar
Morrow, C. A. & Gortner, R. A. (1917). Soil Sci. 3, 297.CrossRefGoogle Scholar
Müller, F. (1901). Z. Biol. 42, 564.Google Scholar
Osborne, T. B. & Harris, I. F. (1903). J. Amer. Chem. Soc. 25, 323.CrossRefGoogle Scholar
Palmer, J. W., Smyth, E. M. & Meyer, K. (1937). J. Biol. Chem. 119, 491.CrossRefGoogle Scholar
Pauly, H. & Ludwic, E. (1922). Hoppe-Seyl. Z. 121, 170.Google Scholar
Potter, R. S. & Snyder, R. S. (1915). J. Amer. Chem. Soc. 37, 2219.CrossRefGoogle Scholar
Pucher, G. W., Vickery, H. B. & Leavenworth, C. S. (1935). Industr. Engng Chem. (Anal, ed.), 7, 152.Google Scholar
Rees, M. W. (1946). Biochem. J. 40, 632.CrossRefGoogle Scholar
Robinson, C. S. (1911). J. Amer. Chem. Soc. 33, 564.CrossRefGoogle Scholar
Schmuk, A. (1914). Russ. J. Exp. Agric. 15, 139.Google Scholar
Schreiner, O. & Shorey, E. C. (1910 a). J. Biol. Chem. 8, 381.CrossRefGoogle Scholar
Schreiner, O. & Shorey, E. C. (1910 b). Bull. U.S. Div. Soils, no. 74.Google Scholar
Schreiner, O. & Shorey, E. C. (1910 c). J. Biol. Chem. 8, 385.CrossRefGoogle Scholar
Shore, A., Wilson, H. & Stueck, G. (1936). J. Biol. Chem. 112, 407.CrossRefGoogle Scholar
Shorey, E. C. (1906). Ann. Rep. Hawaii Agric. Exp. Sta.Google Scholar
Shorey, E. C. (1912). J. Amer. Chem. Soc. 34, 99.Google Scholar
Shorey, E. C. (1913). Bull. U.S. Div. Soils, no. 88.Google Scholar
Shorey, E. C. (1930). Tech. Bull. U.S. Dep. Agric. no. 211.Google Scholar
Suzuki, S. (19061908). Bull. Coll. Agric. Tokyo, 7, 513.Google Scholar
Van Slyke, D. D. (19111912). J. Biol. Chem. 10, 15.CrossRefGoogle Scholar
Van Slyke, D. D. (1915). J. Biol. Chem. 22, 281.CrossRefGoogle Scholar
Van Slyke, D. D. (1929). J. Biol. Chem. 83, 425.Google Scholar
Van Slykb, D. D., Dillon, R. T., MacFadyen, D. A. & Hamilton, P. (1941). J. Biol. Chem. 141, 627.CrossRefGoogle Scholar
Van Slyke, D. D., Hiller, A. & MacFadyen, D. A. (1941). J. Biol. Chem. 141, 681.CrossRefGoogle Scholar
Wrenshall, C. L. & Dyer, W. S. (1941). Soil Sci. 51, 235.Google Scholar
Zuckerkandl, F. & Messiner-Klebermass, L. (1931). BioChem. Z. 236, 19.Google Scholar