Published online by Cambridge University Press: 27 March 2009
The concentrations of dry matter, crude protein, fat and ash and of Ca, P, Mg, Na and K were determined for 22 sets of twin foetuses, 33 of triplets and 11 of quadruplets of known gestational ages within the range 55–145 days. In addition, determinations were made of the concentrations of dry matter, crude protein, fat and ash in their associated placentae and empty uteri, and of dry matter, nitrogen, energy and ash in the foetal fluids. The dry matter, crude protein and fat concentrations in the placentae increased with foetal age and decreased with increasing litter size. Ash concentrations were unaltered. There was no effect of litter size or foetal age on the concentration of nutrients in the empty uteri. Dry matter and nitrogen concentrations in the fluids increased with foetal age but were independent of litter size, whereas ash concentrations increased with litter size but not with age.
The form of the mathematical model for foetal growth is considered in relation to the estimation of rates of accretion and the estimation of the differences in composition to be expected between foetuses that are heavy and others that are light relative to their age. When the weights of the foetal constituents were fitted by Gompertz equations extended to include foetal weight as an allometric term, the effects of litter size on foetal composition could be estimated from the foetal weights for each size of litter. Concentrations of dry matter and of most constituents in the foetuses became less as numbers of foetuses increased, irrespective of stage of gestation.
A description of the changing composition of the growing foetuses was provided by specific growth rates calculated from the fitted equations. With minor exceptions, derived estimates of foetal concentrations of each constituent were found to agree quite well with most previously published estimates for ovine foetuses, but similar agreement on daily accretion rates was not to be expected in view of the sensitivity of such estimates to the choice of model for foetal growth. Rates of accretion in the gravid uterus increased up to about 5 weeks before parturition and tended to level off thereafter, but most of them still increased slightly over the last 2 weeks, even in ewes bearing triplets or quadruplets. Taking account of the changes in the maternal body of the ewes, it was concluded that although the prolific ewes incurred a substantial energy deficit, and could not have consumed sufficient of the diet to avoid this, their intakes in late pregnancy were nevertheless adequate to support the high rates of accretion of protein and of minerals in the gravid uterus.