Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-10T21:13:14.229Z Has data issue: false hasContentIssue false

Sources of uncertainty in the IPCC Tier 2 Canadian livestock model

Published online by Cambridge University Press:  19 December 2011

Y. KARIMI-ZINDASHTY
Affiliation:
Research Branch, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
J. D. MACDONALD
Affiliation:
Environment Canada, 200 Boul Sacre Cœur, Gatineau, Québec J8X 4C6,Canada
R. L. DESJARDINS*
Affiliation:
Research Branch, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
D. E. WORTH
Affiliation:
Research Branch, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
J. J. HUTCHINSON
Affiliation:
Research Branch, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
X. P. C. VERGÉ
Affiliation:
Research Branch, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

Estimates of uncertainties are essential when comparing the greenhouse gas (GHG) emissions from a variety of sources. Monte Carlo Simulation (MCS) was applied to estimate the uncertainties in methane emissions and the methane emission intensities from livestock in Canada, calculated using the Intergovernmental Panel on Climate Change (IPCC) methodology. National methane emissions from enteric fermentation and manure management in 2008 were 21·2 and 4·3 Teragram CO2 equivalents (Tg CO2e) with uncertainties of 38 and 73%, respectively. The methane emission intensities (kg of CO2e per kg of live animal weight) were 5·9, 0·9 and 4·9 from Canadian beef, swine and lamb, respectively, with overall uncertainties of 44, 99 and 101%, defined as the 95% confidence interval relative to the mean. A sensitivity analysis demonstrated that IPCC default parameters such as the methane conversion rate (Ym), the coefficient for calculating net energy for maintenance (Cfi) and the methane conversion factor (MCF) were the greatest sources of uncertainty. Canadian agricultural methane emissions are usually calculated by province and by animal subcategories. However, the IPCC default parameters can be assumed to be correlated among regions and animal subcategories; therefore values are assigned at the national scale for the main cattle categories (dairy and non-dairy cattle). When it was assumed that these parameters were uncorrelated at the regional scale, the overall uncertainties were reduced to 20 and 48% for enteric fermentation and manure management, respectively, and assuming that parameters were uncorrelated at the animal subcategory scale reduced uncertainties to 13 and 41% for enteric fermentation and manure management, respectively. When the uncertainty is assigned at the most disaggregated level, even doubling the uncertainty of key parameters such as Ym and Cfi, only increased the national uncertainties to 22 and 52% for enteric fermentation and manure management, respectively. The current analysis demonstrated the importance of obtaining parameters specific to regions and animal subcategories in order to estimate GHG emissions more accurately and to reduce the uncertainties in agricultural GHG inventories. It also showed that assumptions made in the calculation of uncertainties can have a large influence on the uncertainty estimates.

Type
Climate Change and Agriculture Research Papers
Copyright
Y. Karimi-Zindashty, R. L. Desjardins, D. E. Worth, J. J. Hutchinson and X. P. C. Vergé of the Department of the Agriculture and Agri-Food, Government of Canada © Her Majesty the Queen in Right of Canada, as represented by the Minister of Agriculture and Agr-Food Canada, 2011. J. D. MacDonald of Environment Canada © Her Majesty the Queen in Right of Canada, as represented by the Minister of the Environment, 2011. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agriculture and Agri-Food Canada (AAFC) (2011). Statistics of the Canadian Dairy Industry, 2011 Edition. Ottawa, Canada: Agriculture and Agri-Food Canada, Animal Industry Division, Dairy Section. Available online at http://www.dairyinfo.gc.ca/pdf/publication_2011edition.pdf (verified 28 October 2011).Google Scholar
Aker, C. & Smith, J. (2005). Comparing Carcass Value. OMAFRA Factsheet. Ontario: OMAFRA. Available online at http://www.omafra.gov.on.ca/english/livestock/swine/calcs/comparing_carcass_value.htm#top (verified 17 October 2011).Google Scholar
Beauchemin, K. A. & McGinn, S. M. (2005). Methane emissions from feedlot cattle fed barley or corn diets. Journal of Animal Science 83, 653661.CrossRefGoogle ScholarPubMed
Beauchemin, K. A. & McGinn, S. M. (2006). Effects of various feed additives on the methane emissions from beef cattle. International Congress Series 1293, 152155.CrossRefGoogle Scholar
Beauchemin, K. A., McGinn, S. M. & Petit, H. V. (2007). Methane abatement strategies for cattle: lipid supplementation of diets. Canadian Journal of Animal Science 87, 431440.CrossRefGoogle Scholar
Benchaar, C., Petit, H. V., Berthiaume, R., Whyte, T. D. & Chouinard, P. Y. (2006). Effects of addition of essential oils and monensin premix on digestion, ruminal fermentation, milk production, and milk composition in dairy cows. Journal of Dairy Science 89, 43524364.CrossRefGoogle ScholarPubMed
Benchaar, C., Pomar, C. & Chiquette, J. (2001). Evaluation of dietary strategies to reduce methane production in ruminants: a modelling approach. Canadian Journal of Animal Science 81, 563574.CrossRefGoogle Scholar
Boadi, D., Ominsky, K. H., Fulawka, D. L. & Wittenberg, K. M. (2004). Improving Estimates of Methane Emissions Associated with Enteric Fermentation of Cattle in Canada by Adopting an IPCC (Intergovernmental Panel on Climate Change) Tier 2 Methodology – Technical Report. Gatineau, QC: Environment Canada.Google Scholar
Boadi, D. A. & Wittenberg, K. M. (2002). Methane production from dairy and beef heifers fed forages differing in nutrient density using the sulphur hexafluoride (SF6) tracer gas technique. Canadian Journal of Animal Science 82, 201206.CrossRefGoogle Scholar
Boadi, D. A., Wittenberg, K. M. & McCaughey, W. P. (2002). Effects of grain supplementation on methane production of grazing steers using the sulphur (SF6) tracer gas technique. Canadian Journal of Animal Science 82, 151157.CrossRefGoogle Scholar
Bretscher, D. & Leifeld, J. (2008). Uncertainty of Agricultural CH4 and N2O Emissions in Switzerland. Zurich: Natural Resources and Agriculture, Air Pollution/Climate Group. Available online at http://www.bafu.admin.ch/climatereporting/00545/01913/index.html?lang=en (verified 17 October 2011).Google Scholar
Bourque, L. & Koroluk, R. (2003). Manure storage in Canada. Farm Environmental Management in Canada 1, 152.Google Scholar
Cole, C. V., Duxbury, J., Freney, J., Heinemeyer, O., Minami, K., Mosier, A., Paustian, K., Rosenberg, N., Sampson, N., Sauerbeck, D. & Zhao, Q. (1997). Global estimates of potential mitigation of greenhouse gas emissions by agriculture. Nutrient Cycling in Agroecosystems 49, 221228.CrossRefGoogle Scholar
Dyer, J. A., Vergé, X. P. C., Desjardins, R. L. & Worth, D. E. (2010). The protein-based GHG emission intensity for livestock products in Canada. Journal of Sustainable Agriculture 34, 618629.CrossRefGoogle Scholar
Ellis, J. L., Bannink, A., France, J., Kebreab, E. & Dijkstra, J. (2010). Evaluation of enteric methane prediction equations for dairy cows used in whole farm models. Global Change Biology 16, 32463256.CrossRefGoogle Scholar
Ellis, J. L., Kebreab, E., Odongo, N. E., Beauchemin, K., McGinn, S., Nkrumah, J. D., Moore, S. S., Christopherson, R., Murdoch, G. K., McBride, B. W., Okine, E. K. & France, J. (2009). Modeling methane production from beef cattle using linear and nonlinear approaches. Journal of Animal Science 87, 13341345.CrossRefGoogle ScholarPubMed
Ellis, J. L., Kebreab, E., Odongo, N. E., McBride, B. W., Okine, E. K. & France, J. (2007). Prediction of methane production from dairy and beef cattle. Journal of Dairy Science 90, 34563467.CrossRefGoogle ScholarPubMed
Environment Canada. (2005). Canada's GHG Inventory 1990–2003: National Inventory Report. Gatineau, Canada: Environment Canada.Google Scholar
Environment Canada. (2007). National Inventory Report 1990–2005: Greenhouse Gas Sources and Sinks in Canada. Gatineau, Canada: Environment Canada.Google Scholar
Environment Canada. (2010). National Inventory Report 1990–2008: Greenhouse Gas Sources and Sinks in Canada. Gatineau, Canada: Environment Canada.Google Scholar
Galbraith, J. K., Mathison, G. W., Hudson, R. J., McAllister, T. A. & Cheng, K. J. (1998). Intake, digestibility, methane and heat production in bison, wapiti and white-tailed deer. Canadian Journal of Animal Science 78, 681691.CrossRefGoogle Scholar
Gonzalez-Alvalos, E. & Ruiz-Suarez, L. G. (2007). Methane conversion factors from cattle manure in Mexico. Atmósfera 20, 8392.Google Scholar
Granger-Morgan, M. & Henrion, M. (1990). Analytica: a software tool for uncertainty analysis and communication. In Uncertainty: A Guide to Dealing with Uncertainty in Quantitative Risk and Policy Analysis (Eds Granger Morgan, M. & Henrion, M.), pp. 257286. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Intergovernmental Panel on Climate Change (IPCC). (1997). Revised 1996 IPCC Guidelines for National GHG Inventories: Reference Manual. Section 4: Agriculture. Cambridge, UK: Cambridge University Press. Available online at http:www.ipcc-nggip.iges.or.jp/public/gl/invs6c.htm.Google Scholar
Intergovernmental Panel on Climate Change (IPCC). (2000 a). Quantifying uncertainties in practice. In Good Practice Guidance and Uncertainty Management in National GHG Inventories (Eds Penman, J., Kruger, D. & Galbally, I.), pp. 6.16.34. Cambridge, UK: Cambridge University Press. Available online at http://www.ipcc-nggip.iges.or.jp/public/gp/english/ (verified 17 October 2011).Google Scholar
Intergovernmental Panel on Climate Change (IPCC). (2000 b). Agriculture. In IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Eds Penman, J., Kruger, D. & Galbally, I.), pp. 4.14.94. Cambridge, UK: Cambridge University Press. Available online at http://www.ipcc-nggip.iges.or.jp/public/gp/english/index.html (verified 17 October 2011).Google Scholar
Intergovernmental Panel on Climate Change (IPCC). (2000 c). Annex 1: Conceptual basis for uncertainty analysis. In IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Eds Penman, J., Kruger, D. & Galbally, I.), pp. A1.1A1.22. Cambridge, UK: Cambridge University Press. Available online at http://www.ipcc-nggip.iges.or.jp/public/gp/english/index.html (verified 17 October 2011).Google Scholar
Intergovernmental Panel on Climate Change (IPCC). (2006). Emissions from livestock and manure management. In 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 4: Agriculture, Forestry and Other Land Use (Eds Eggleston, S., Buendia, L., Miwa, K., Ngara, T. & Tanabe, K.), pp. 10.010.87. Cambridge, UK: Cambridge University Press. Available online at http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.htm (verified 17 October 2011).Google Scholar
Intergovernmental Panel on Climate Change (IPCC). (2007). Climate Change 2007: Mitigation of Climate Change. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Eds Mets, B., Davidson, O. R., Bosch, P. R., Dave, R. & Meyer, L. A.). Cambridge, UK: Cambridge University Press.Google Scholar
Kaharabata, S. K., Schuepp, P. H. & Desjardins, R. L. (1998). Methane emissions from above ground open manure slurry tanks. Global Biogeochemical Cycles 12, 545554.CrossRefGoogle Scholar
Kaharabata, S. K., Schuepp, P. H. & Desjardins, R. L. (2000). Estimating methane emissions from dairy cattle housed in a barn and feedlot using an atmospheric tracer. Environmental Science and Technology 34, 32963302.CrossRefGoogle Scholar
Kebreab, E., Clark, K., Wagner-Riddle, C. & France, J. (2006). Methane and nitrous oxide emissions from Canadian animal agriculture: a review. Canadian Journal of Animal Science 86, 135158.CrossRefGoogle Scholar
Kebreab, E., Johnson, K. A., Archibeque, S. L., Pape, D. & Wirth, T. (2008). Model for estimating enteric methane emissions from US dairy and feedlot cattle. Journal of Animal Science 86, 27382748.CrossRefGoogle ScholarPubMed
Lague, C., Gaudet, E., Agnew, J. & Fonstad, T. A. (2005). Greenhouse gas emissions from liquid swine manure storage facilities in Saskatchewan. Transactions of the ASABE 48, 22892296.CrossRefGoogle Scholar
Lassey, K. R. (2007). Livestock methane emission: From the individual grazing animal through national inventories to the global methane cycle. Agricultural and Forest Meteorology 142, 120132.CrossRefGoogle Scholar
Lumina (2007). Analytica User Guide: Release 4.0 for Windows. Los Gatos, CA: Lumina Decision Systems, Inc.Google Scholar
Mangino, J., Bartram, D. & Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Technical paper. In US Environment Protection Agency's 11th International Emission Inventory Conference, Atlanta, Georgia, 15–18 April 2002. Emission Inventories: Partnering for the Future. Research Triangle Park, NC, USA: US EPA. Available online at http://www.epa.gov/ttnchie1/conference/ei11/ammonia/mangino.pdf (verified 18 October 2011).Google Scholar
Marinier, M., Clark, K. & Wagner-Riddle, C. (2004 a). Improving Estimates of Methane Emissions Associated with Animal Waste Management Systems in Canada by Adopting an IPCC Tier 2 Methodology. Technical report. Final report submitted to the Greenhouse Gas Division, Environment Canada. Ontario, Canada: Department of Land Resource Science, University of Guelph.Google Scholar
Marinier, M., Clark, K. & Wagner-Riddle, C. (2004 b). Determining Manure Management Practices for Major Domestic animals in Canada. Technical report. Environment Canada's Greenhouse Gas Inventory Project, final report. Ottawa, ON: Environment Canada.Google Scholar
Massé, D. I., Masse, L., Claveau, S., Benchaar, C. & Thomas, O. (2008). Methane emissions from manure storages. Transactions of the ASAE 51, 17751781.CrossRefGoogle Scholar
McAllister, T. A., Okine, E. K., Mathison, G. W. & Cheng, K. J. (1996). Dietary, environmental and microbiological aspects of methane production in ruminants. Canadian Journal of Animal Science 76, 231243.CrossRefGoogle Scholar
McGinn, S. M., Beauchemin, K. A., Coates, T. & Colombatto, D. (2004). Methane emissions from beef cattle: effects of monesin, sunflower oil, enzymes, yeast, and fumaric acid. Journal of Animal Science 82, 33463356.CrossRefGoogle Scholar
McGinn, S. M., Chung, Y.-H., Beauchemin, K. A., Iwaasa, A. D. & Grainger, C. (2009). Use of corn distillers' dried grains to reduce enteric methane loss from beef cattle. Canadian Journal of Animal Science 89, 409413.CrossRefGoogle Scholar
Monni, S., Perala, P. & Regina, K. (2007). Uncertainty in agricultural CH4 and N2O emissions from Finland – possibilities to increase accuracy in emission estimates. Mitigation and Adaptation Strategies for Global Change 12, 545571.CrossRefGoogle Scholar
Moss, R. H. & Schneider, S. H. (2000). Uncertainties in the IPCC TAR: recommendations to lead authors for more consistent assessment and reporting. In IPCC Supporting Material: Guidance Papers on the Cross Cutting Issues of the Third Assessment Report of the IPCC (Eds Pachauri, R., Taniguchi, T. & Tanaka, K.), pp. 3351. Geneva, Switzerland: World Meteorological Organization.Google Scholar
Ominski, K. H., Boadi, D. A., Wittenberg, K. M., Fulawka, D. L. & Basarab, J. A. (2007). Estimates of enteric methane emissions from cattle in Canada using the IPCC Tier-2 methodology. Canadian Journal of Animal Science 87, 459467.CrossRefGoogle Scholar
Park, K. H., Wagner-Riddle, C. & Gordon, R. J. (2010). Comparing methane fluxes from stored liquid manure using micrometeorological mass balance and floating chamber methods. Agricultural and Forest Meteorology 150, 175181.CrossRefGoogle Scholar
Pattey, E., Trzcinski, M. K. & Desjardins, R. L. (2005). Quantifying the reduction of green-house gas emissions as a result of composting dairy and beef cattle manure. Nutrient Cycling in Agroecosystems 72, 173187.CrossRefGoogle Scholar
Rivest, J., Correa, J. A., Bouchard, S., Faucitano, L., Fortin, J., Levallois, R., Laforest, J.-P., & Gariépy, C. (2004). Les impacts d'une augmentation du poids d'abattage et de la vitesse de croissance. In Colloque sur la Production Porcine 2004, Cahier des Conférences. CRAAQ, 19 Octobre 2004, pp. 3751. Quebec: CRAAQ.Google Scholar
Rypdal, K. & Winiwarter, W. (2001). Uncertainties in greenhouse gas emission inventories, evaluation, comparability and implications. Environmental Science and Policy 4, 107116.CrossRefGoogle Scholar
Stanford, K., Clark, I. & Jones, S. D. M. (1995). Use of ultrasound in prediction of carcass characteristics in lambs. Canadian Journal of Animal Science 75, 185189.CrossRefGoogle Scholar
Statistics Canada. (2008). Alternative Livestock on Canadian Farms. Catalogue No. 23–502-XIE. Ottawa, Canada: Statistics Canada.Google Scholar
Statistics Canada. (2009 a). Cattle Statistics. Vol. 8, No. 2 Catalogue No. 23-012-XIE. Ottawa, Canada: Statistics Canada.Google Scholar
Statistics Canada. (2009 b). Hog Statistics. Vol. 8, No. 2 Catalogue No. 23-010-XIE. Ottawa, Canada: Statistics Canada.Google Scholar
Statistics Canada. (2009 c). Sheep Statistics. Vol. 8, No. 2 Catalogue No. 23-011-XIE. Ottawa, Canada: Statistics Canada.Google Scholar
Stewart, A. A., Little, S. M., Ominski, K. H., Wittenberg, K. M. & Janzen, H. H. (2009). Evaluating greenhouse gas mitigation practices in livestock systems: an illustration of a whole-farm approach. Journal of Agricultural Science, Cambridge 147, 367382.CrossRefGoogle Scholar
Van der Laan, S., Neubert, R. E. M. & Meijer, H. A. J. (2009). Methane and nitrous oxide emissions in The Netherlands: ambient measurements support the national inventories. Atmospheric Chemistry and Physics 9, 93699379.CrossRefGoogle Scholar
van Haarlem, R. P., Desjardins, R. L., Gao, Z., Flesch, T. K. & Li, X. (2008). Methane and ammonia emissions from a beef feedlot in western Canada for a twelve-day period in the fall. Canadian Journal of Animal Science 88, 641649.CrossRefGoogle Scholar
VanderZaag, A. C., Gordon, R. J., Jamieson, R. C., Burton, D. L. & Stratton, G. W. (2009). Gas emissions from straw covered liquid dairy manure during summer storage and autumn agitation. Transactions of the ASABE 52, 599608.CrossRefGoogle Scholar
VanderZaag, A. C., Gordon, R. J., Jamieson, R. C., Burton, D. L. & Stratton, G. W. (2010). Effects of winter storage conditions and subsequent agitation on gaseous emissions from liquid dairy manure. Canadian Journal of Soil Science 90, 229239.CrossRefGoogle Scholar
Vergé, X. P. C., Dyer, J. A., Desjardins, R. L. & Worth, D. (2007). Greenhouse gas emissions from the Canadian dairy industry during 2001. Agricultural Systems 94, 683693.CrossRefGoogle Scholar
Vergé, X. P. C., Dyer, J. A., Desjardins, R. L. & Worth, D. (2008). Greenhouse gas emissions from the Canadian beef industry. Agricultural Systems 98, 126134.CrossRefGoogle Scholar
Vergé, X. P. C., Dyer, J. A., Desjardins, R. L. & Worth, D. (2009 a). Greenhouse gas emissions from the Canadian pork industry. Livestock Science 121, 92101.CrossRefGoogle Scholar
Vergé, X. P. C., Dyer, J. A., Desjardins, R. L. & Worth, D. (2009 b). Long-term trends in greenhouse gas emissions from the Canadian poultry industry. Journal of Applied Poultry Research 18, 210222.CrossRefGoogle Scholar
Wagner-Riddle, C., Park, K. H. & Thurtell, G. W. (2006). A micrometeorological mass balance approach for greenhouse gas flux measurements from stored animal manure. Agricultural and Forest Meteorology 136, 175187.CrossRefGoogle Scholar