Published online by Cambridge University Press: 01 July 2010
Starch is a major component of wheat grain and, to a great extent, determines the grain weight. Starch accumulation in wheat (Triticum aestivum L.) is closely associated with sink strength. Four winter wheat cultivars, Lumai 21 and Jimai 20 (compact-spike cultivars) and Shannong 1391 and Shannong 12 (loose-spike cultivars) were grown to evaluate the amylose and amylopectin accumulation in both superior and inferior grains (higher and lower individual grain weight, respectively) and the relationship between starch accumulation and sink strength. In general, superior grains showed a higher starch accumulation rate, endosperm cell number and activity of enzymes including sucrose synthase (SS), uridine diphosphorate glucose pyrophosphorylase (UGPP), adenosine diphosphorate glucose pyrophosphorylase (AGPP), soluble starch synthase (SSS) and granule-bound starch synthase (GBSS), and subsequently produced higher starch accumulation and grain weight than inferior grains. Greater differences in starch accumulation and grain weight were found between the two classes of grains for compact-spike cultivars than between those for loose-spike cultivars. These results suggest that the grain sink strength, determined by endosperm cell number and the activity of synthesis-related enzymes, is closely associated with starch accumulation in superior and inferior grains on a wheat spike.