Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-20T18:03:54.859Z Has data issue: false hasContentIssue false

Simulation of crop production in weed-infested fields for data-scarce regions

Published online by Cambridge University Press:  11 February 2016

H. VAN GAELEN*
Affiliation:
Department of Earth and Environmental Sciences, KU Leuven – University of Leuven, Celestijnenlaan 200 E, 3001 Leuven, Belgium
N. DELBECQUE
Affiliation:
Department of Earth and Environmental Sciences, KU Leuven – University of Leuven, Celestijnenlaan 200 E, 3001 Leuven, Belgium
B. ABRHA
Affiliation:
Department of Dryland Crop and Horticultural Sciences, Mekelle University, P.O. Box 231, Mekelle, Ethiopia
A. TSEGAY
Affiliation:
Department of Dryland Crop and Horticultural Sciences, Mekelle University, P.O. Box 231, Mekelle, Ethiopia
D. RAES
Affiliation:
Department of Earth and Environmental Sciences, KU Leuven – University of Leuven, Celestijnenlaan 200 E, 3001 Leuven, Belgium
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

Weed infestation is a major yield-reducing factor that also decreases crop water productivity. Yet weeds are often neglected in crop productivity simulation studies, because existing empirical equations and mechanistic models are not widely applicable or have a high demand for input data and calibration. For that reason, AquaCrop, a widely applicable crop water productivity model, was expanded with a weed management module which requires only two easily obtainable input variables: (i) relative leaf cover of weeds, and (ii) weed-induced increase of total canopy cover. Using these inputs, AquaCrop directly simulates soil water content, crop canopy development and production as it is observed in weed-infested fields. Despite this simple approach, AquaCrop performed well to simulate soil water content in the root zone (relative root-mean-square error (RRMSE) of 5–13%), canopy cover (RRMSE of 15–22%), dry above-ground crop biomass during the season (RRMSE of 21–39%) and at maturity (RRMSE of 5–6%) and yield (RRMSE of 11–25%) of barley and wheat grown under different weed infestation levels and environments. The current study illustrates that the AquaCrop model can be used to assess the effect of weed infestation on crop growth and production, using a simple approach that is applicable to diverse environmental and agronomic conditions, even in data-scarce regions.

Type
Crops and Soils Research Papers
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abrha, B. (2013). Barley (Hordeum vulgare L.) yield prediction and its gap analysis in Geba catchment, northern highlands of Ethiopia. Ph.D. Thesis, KU Leuven University, Leuven, Belgium.Google Scholar
Abrha, B., Delbecque, N., Raes, D., Tsegay, A., Todorovic, M., Heng, L., Vanutrecht, E., Geerts, S., Garcia-Vila, M. & Deckers, S. (2012). Sowing strategies for barley (Hordeum vulgare L.) based on modelled yield response to water with AquaCrop. Experimental Agriculture 48, 252271.CrossRefGoogle Scholar
Acevedo, E., Silva, P. & Silva, H. (2002). Wheat growth and physiology. In Bread Wheat – Improvement and Production. FAO Plant Production and Protection Series No. 30 (Eds Curtis, B. C., Rajaram, S. & Gómez Macpherson, H.), pp. 5389. Rome: FAO. Available from: http://www.fao.org/docrep/006/y4011e/y4011e06.htm (accessed 26 October 2015).Google Scholar
Aldrich, R. J. (1987). Predicting crop yield reductions from weeds. Weed Technology 1, 199206.CrossRefGoogle Scholar
Andújar, D., Ribeiro, A., Carmona, R., Fernández-Quintanilla, C. & Dorado, J. (2010). An assessment of the accuracy and consistency of human perception of weed cover. Weed Research 50, 638647.CrossRefGoogle Scholar
Burgos-Artizzu, X. P., Ribeiro, A., Tellaeche, A., Pajares, G. & Fernández-Quintanilla, C. (2009). Improving weed pressure assessment using digital images from an experience-based reasoning approach. Computers and Electronics in Agriculture 65, 176185.CrossRefGoogle Scholar
Chikoye, D., Hunt, L. A. & Swanton, C. J. (1996). Simulation of competition for photosynthetically active radiation between common ragweed (Ambrosia artemisiifolia) and Dry Bean (Phaseolus vulgaris). Weed Science 44, 545554.CrossRefGoogle Scholar
Cousens, R. (1985). A simple model relating yield loss to weed density. Annals of Applied Biology 107, 239252.CrossRefGoogle Scholar
Cousens, R., Brain, P., O'Donovan, J. T. & O'Sullivan, P. A. (1987). The use of biologically realistic equations to describe the effects of weed density and relative time of emergence on crop yield. Weed Science 35, 720725.CrossRefGoogle Scholar
Cusicanqui, J., Dillen, K., Garcia, M., Geerts, S., Raes, D. & Mathijs, E. (2013). Economic assessment at farm level of the implementation of deficit irrigation for quinoa production in the Southern Bolivian Altiplano. Spanish Journal of Agricultural Research 11, 894907.CrossRefGoogle Scholar
Deen, W., Cousens, R., Warringa, J., Bastiaans, L., Carberry, P., Rebel, K., Riha, S., Murphy, C., Benjamin, L. R., Cloughley, C., Cussans, J., Forcella, F., Hunt, T., Jamieson, P., Lindquist, J. & Wang, E. (2003). An evaluation of four crop: weed competition models using a common data set. Weed Research 43, 116129.CrossRefGoogle Scholar
Dunan, C. M., Moore, F. D. & Westra, P. (1994). A plant process-economic model for wild oats management decisions in irrigated barley. Agricultural Systems 45, 355368.CrossRefGoogle Scholar
Dunan, C. M., Westra, P. & Moore, F. D. (1999). A plant process economic model for weed management decisions in irrigated onion. Journal of the American Society for Horticultural Science 124, 99105.CrossRefGoogle Scholar
FAO (2009). The lurking menace of weeds – Farmers’ enemy No. 1. FAO News Article, 11 August 2009. Rome: FAO. Available from: http://www.fao.org/news/story/en/item/29402/icode/ (verified 17 September 2015).Google Scholar
García-Vila, M. & Fereres, E. (2012). Combining the simulation crop model AquaCrop with an economic model for the optimization of irrigation management at farm level. European Journal of Agronomy 36, 2131.CrossRefGoogle Scholar
García-Vila, M., Fereres, E., Mateos, L., Orgaz, F. & Steduto, P. (2009). Deficit irrigation optimization of cotton with AquaCrop. Agronomy Journal 101, 477487.CrossRefGoogle Scholar
Geerts, S., Raes, D., Garcia, M., Taboada, C., Miranda, R., Cusicanqui, J., Mhizha, T. & Vacher, J. (2009). Modeling the potential for closing quinoa yield gaps under varying water availability in the Bolivian Altiplano. Agricultural Water Management 96, 16521658.CrossRefGoogle Scholar
Geerts, S., Raes, D. & Garcia, M. (2010). Using AquaCrop to derive deficit irrigation schedules. Agricultural Water Management 98, 213216.CrossRefGoogle Scholar
Hsiao, T. C., Heng, L., Steduto, P., Rojas-Lara, B., Raes, D. & Fereres, E. (2009). AquaCrop – The FAO crop model to simulate yield response to water: III. Parameterization and testing for maize. Agronomy Journal 101, 448459.CrossRefGoogle Scholar
Jamieson, P. D., Porter, J. R. & Wilson, D. R. (1991). A test of the computer simulation model ARCWHEAT1 on wheat crops grown in New Zealand. Field Crops Research 27, 337350.CrossRefGoogle Scholar
Keating, B. A., Carberry, P. S., Hammer, G. L., Probert, M. E., Robertson, M. J., Holzworth, D., Huth, N. I., Hargreaves, J. N. G., Meinke, H., Hochman, Z., McLean, G., Verburg, K., Snow, V., Dimes, J. P., Silburn, M., Wang, E., Brown, S., Bristow, K. L., Asseng, S., Chapman, S., McCown, R. L., Freebairn, D. M. & Smith, C. J. (2003). An overview of APSIM, a model designed for farming systems simulation. European Journal of Agronomy 18, 267288.CrossRefGoogle Scholar
Kim, D. & Kaluarachchi, J. (2015). Validating FAO AquaCrop using Landsat images and regional crop information. Agricultural Water Management 149, 143155.CrossRefGoogle Scholar
Kiniry, J. R., Williams, J. R., Gassman, P. W. & Debaeke, P. (1992). A general, process-oriented model for two competing plant species. Transactions of the ASAE (USA) 35, 801810.CrossRefGoogle Scholar
Kropff, M. J. & Spitters, C. J. T. (1991). A simple model of crop loss by weed competition from early observations on relative leaf area of the weeds. Weed Research 31, 97105.CrossRefGoogle Scholar
Kropff, M. J. & van Laar, H. H. (1993). Modelling Crop–Weed Interactions. Wallingford, UK & Los Banos, Philippines: CAB International & IRRI.Google Scholar
Kropff, M. J., Weaver, S. E. & Smits, M. A. (1992). Use of ecophysiological models for cropweed interference: relations amongst weed density, relative time of weed emergence, relative leaf area and yield loss. Weed Science 40, 296301.CrossRefGoogle Scholar
Kropff, M. J., Lotz, L. A. P., Weaver, S. E., Bos, H. J., Wallinga, J. & Migo, T. (1995). A two parameter model for prediction of crop loss by weed competition from early observations of relative leaf area of the weeds. Annals of Applied Biology 126, 329346.CrossRefGoogle Scholar
Lantinga, E. A., Nassiri, M. & Kropff, M. J. (1999). Modelling and measuring vertical light absorption within grass-clover mixtures. Agricultural and Forest Meteorology 96, 7183.CrossRefGoogle Scholar
Loague, K. & Green, R. E. (1991). Statistical and graphical methods for evaluating solute transport models: overview and application. Journal of Contaminant Hydrology 7, 5173.CrossRefGoogle Scholar
Lorite, I. J., García-Vila, M., Santos, C., Ruiz-Ramos, M. & Fereres, E. (2013). AquaData and AquaGIS: two computer utilities for temporal and spatial simulations of water-limited yield with AquaCrop. Computers and Electronics in Agriculture 96, 227237.CrossRefGoogle Scholar
Lotz, L. A. P., Kropff, M. J., Wallinga, J., Bos, H. J. & Groeneveld, R. M. W. (1994). Techniques to estimate relative leaf area and cover of weeds in crops for yield loss prediction. Weed Research 34, 167175.CrossRefGoogle Scholar
Milberg, P. & Hallgren, E. (2004). Yield loss due to weeds in cereals and its large-scale variability in Sweden. Field Crops Research 86, 199209.CrossRefGoogle Scholar
Mitchell, P. L. & Sheehy, J. E. (1997). Comparison of predictions and observations to assess model performance: a method of empirical validation. In Applications of Systems Approaches at the Field Level (Eds Kropff, M. J., Teng, P. S., Aggarwal, P. K., Bouma, J., Bouman, B. A. M., Jones, J. W. & van Laar, H. H.), pp. 437451. Systems Approaches for Sustainable Agricultural Development vol. 6. Dordrecht, The Netherlands: Springer.CrossRefGoogle Scholar
Morishita, D. W. & Thill, D. C. (1988). Factors of wild oat (Avena fatua) interference on spring barley (Hordeum vulgare) growth and yield. Weed Science 36, 3742.CrossRefGoogle Scholar
Murphy, C., Lemerle, D., Jones, R. & Harden, S. (2002). Use of density to predict crop yield loss between variable seasons. Weed Research 42, 377384.CrossRefGoogle Scholar
Nash, J. E. & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I – A discussion of principles. Journal of Hydrology 10, 282290.CrossRefGoogle Scholar
Pimentel, D., Lach, L., Zuniga, R. & Morrison, D. (2000). Environmental and economic costs of nonindigenous species in the United States. BioScience 50, 5365.CrossRefGoogle Scholar
Raes, D., Steduto, P., Hsiao, T. C. & Fereres, E. (2009). AquaCrop – The FAO crop model to simulate yield response to water: II. Main algorithms and software description. Agronomy Journal 101, 438447.CrossRefGoogle Scholar
Raes, D., Steduto, P., Hsiao, T. C. & Fereres, E. (2012). AquaCrop Reference Manual, AquaCrop Version 4.0. Rome: FAO.Google Scholar
Shrestha, N., Raes, D. & Sah, S. K. (2013 a). Strategies to improve cereal production in the Terai Region (Nepal) during dry season: simulations with Aquacrop. Procedia Environmental Sciences 19, 767775.CrossRefGoogle Scholar
Shrestha, N., Raes, D., Vanuytrecht, E. & Sah, S. K. (2013 b). Cereal yield stabilization in Terai (Nepal) by water and soil fertility management modeling. Agricultural Water Management 122, 5362.CrossRefGoogle Scholar
Steduto, P., Hsiao, T. C., Raes, D. & Fereres, E. (2009). AquaCrop – The FAO crop model to simulate yield response to water: I. Concepts and underlying principles. Agronomy Journal 101, 426437.CrossRefGoogle Scholar
Swanton, C. J., Harker, K. N. & Anderson, R. L. (1993). Crop losses due to weeds in Canada. Weed Technology 7, 537542.CrossRefGoogle Scholar
Tsegay, A., Vanuytrecht, E., Abrha, B., Deckers, J., Gebrehiwot, K. & Raes, D. (2015). Sowing and irrigation strategies for improving rainfed tef (Eragrostis tef (Zucc.) Trotter) production in the water scarce Tigray region, Ethiopia. Agricultural Water Management 150, 8191.CrossRefGoogle Scholar
Van Gaelen, H., Tsegay, A., Delbecque, N., Shrestha, N., Garcia, M., Fajardo, H., Miranda, R., Vanuytrecht, E., Abrha, B., Diels, J. & Raes, D. (2015). A semi-quantitative approach for modelling crop response to soil fertility: evaluation of the AquaCrop procedure. Journal of Agricultural Science, Cambridge 153, 12181233.CrossRefGoogle Scholar
Vanuytrecht, E. (2013). Crop response to climate change. Impact on agricultural production and the soil water balance in the Flemish region of Belgium. Ph.D. Thesis, KU Leuven University, Leuven, Belgium.Google Scholar
Weaver, S. E. (1996). Simulation of cropweed competition: models and their applications. Phytoprotection 77, 312.CrossRefGoogle Scholar
Wilson, B. J. & Peters, N. C. B. (1982). Some studies of competition between Avena fatua L. and spring barley I. The influence of A. fatua on yield of barley. Weed Research 22, 143148.CrossRefGoogle Scholar
Zimdahl, R. L. (2013). Fundamentals of Weed Science, 4th edn. Amsterdam: Elsevier.Google Scholar