Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-03T18:20:22.054Z Has data issue: false hasContentIssue false

Rumen fermentation of herbage in sheep receiving carbohydrate supplements

Published online by Cambridge University Press:  27 March 2009

K. R. Christian
Affiliation:
Ruakura Animal Research Station, Hamilton, New Zealand.
V. J. Williams
Affiliation:
Ruakura Animal Research Station, Hamilton, New Zealand.

Extract

Concentrations of rumen volatile fatty acids, ammonium and protein nitrogen and free microbial count in groups of sheep fed fresh herbage have been compared with concentrations in groups supplemented with pure carbohydrates.

Rumen ammonia concentrations in sucrose and cellulose-supplemented sheep tended to be lower before feeding than in sheep fed herbage only, but this difference disappeared after feeding. Ammonia concentrations in sheep supplemented with starch, and those receiving herbage only were similar before feeding, but the rise after feeding was less for the starch-supplemented group. The rise in volatile fatty acids after feeding was greater when part of the herbage was replaced with an equal weight of dry matter of starch, but lower when replaced with ucrose or cellulose.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1966

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Annison, E. F. (1956). Biochem. J. 64, 705.CrossRefGoogle Scholar
Annison, E. F., Chalmers, M. I., Marshall, S. B. M. & Synge, R. L. M. (1954). J. Agric. Sci. 44, 270.CrossRefGoogle Scholar
Christian, K. R. & Williams, V. J. (1957). N.Z. J. Sci. Sci. Tech. A, 38, 1003.Google Scholar
El-Shazly, K. (1958). J. Agric. Sci. 51, 149.CrossRefGoogle Scholar
Johns, A. T. (1955). N.Z. J. Sci. Tech. A, 37, 301.Google Scholar
Lewis, D. & Mcdonald, I. W. (1958). J. Agric. Sci. 51, 108.CrossRefGoogle Scholar
Mcdonald, I. W. (1952). Biochem. J. 51, 86.CrossRefGoogle Scholar
Mills, R. C., Lardinois, C. C., Rupel, I. W. & Hart, E. B. (1944). J. Dairy Sci. 27, 571.CrossRefGoogle Scholar
Moir, R. J. & Somers, M. (1957). Aust. J. Agric. Res. 8, 253.CrossRefGoogle Scholar
Pearson, R. M. & Smith, J. A. B. (1943). Biochem. J. 37, 153.CrossRefGoogle Scholar
Phillipson, A. T., Dobson, M. J. & Blackbubn, T. H. (1959). Nature, Lond., 183, 402.CrossRefGoogle Scholar
Smith, J. A. B. & Baker, F. (1944). Biochem. J. 38, 496.CrossRefGoogle Scholar
Van Deb Wath, J. G. & Mybubgh, S. (1941). Onderstepoort, J. Vet. Sci. Anim. Ind. 17, 61.Google Scholar
Warner, A. C. I. (1956a). J. gen. Microbiol. 14, 733.CrossRefGoogle Scholar
Warner, A. C. I. (1956b). J. gen. Microbiol. 14, 749.CrossRefGoogle Scholar
Williams, V. J. & Christian, K. R. (1956). N.Z. J. Sci. Tech. A, 38, 268.Google Scholar