Article contents
Response by sugar beet to superphosphate, particularly in relation to soils containing little available phosphorus
Published online by Cambridge University Press: 27 March 2009
Summary
Twenty experiments between 1970 and 1974 tested the effect of five amounts of triple superphosphate (0–110 kg P/ha) on sugar-beet yield in fields where soil contained little sodium bicarbonate-soluble phosphorus. The average yield without phosphorus fertilizer was 6·69 t/ha sugar and the increase from the optimum dressing 0·46 t/ha; the average soil concentration was 12 mg P/l. The fertilizer increased yield by 0·77 t/ha sugar on fields with 0–9 mg/l soil phosphorus, by 0·31 t/ha when soil phosphorus was 10–15 mg/l and had little effect on soils containing larger amounts.
The concentration of phosphorus in plants harvested in mid-summer contained on average 0·29% P in dried tops and 0·13% in roots when given no phosphorus fertilizer, representing a total of 19·3 kg/ha P uptake. Giving superphosphate increased the phosphorus in both dried tops and roots by up to 0·03% and there was 3·7 and 1·7 kg/ha more phosphorus in tops and roots respectively. On the most responsive fields (0–9 mg/l soil P), the fertilizer increased the phosphorus in tops and roots by 0·05% and total uptake by 7 kg P/ha. The increase in uptake (or recovery) of fertilizer varied from 15% when 14 kg P/ha was given to less than 5% when 110 kg P/ha was used.
A dressing of 27 kg P/ha was adequate for maximum yield on 19 of the 20 fields. When fields were grouped, 0–9, 10–15, 16–25 and > 26 mg/l NaHCO3-soluble soil phosphorus, and taking into account the value of the increased sugar yield, the cost of the fertilizer and its residual value, 60, 30, 20 and 10 kg P/ha respectively were the most profitable dressings. These experiments provide evidence, however, that the fertilizer would be used more efficiently if fields containing 0–9 mg soil phosphorus were subdivided into those with 0–4·5 and those with 4·6–9·0 mg/l and the groups given 80 and 40 kg P/ha respectively. These recommendations are substantially less than those used at present; they are adequate for sugar beet but other crops in the rotation would need similar close examination to ensure maximum yield and maintain adequate soil reserves of phosphorus.
- Type
- Research Article
- Information
- Copyright
- Copyright © Cambridge University Press 1976
References
REFERENCES
- 2
- Cited by