Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-22T06:03:08.708Z Has data issue: false hasContentIssue false

Quantitative trait loci mapping for plant architecture traits across two upland cotton populations using SSR markers

Published online by Cambridge University Press:  06 March 2013

C. LI
Affiliation:
Henan Institute of Science and Technology, Key Discipline Open Lab on Crop Molecular Breeding of Henan Institute of Higher Learning, Cotton Research Institute, Xinxiang 453003, Henan, China
L. SONG
Affiliation:
Department of Bioengineering, Huanghuai University, Zhumadian 463000, Henan, China
H. ZHAO
Affiliation:
Henan Institute of Science and Technology, Key Discipline Open Lab on Crop Molecular Breeding of Henan Institute of Higher Learning, Cotton Research Institute, Xinxiang 453003, Henan, China
Z. XIA
Affiliation:
College of Life Sciences, Henan Normal University, Xinxiang 453003, Henan, China
Z. JIA
Affiliation:
College of Life Sciences, Henan Normal University, Xinxiang 453003, Henan, China
X. WANG
Affiliation:
College of Life Sciences, Henan Normal University, Xinxiang 453003, Henan, China
N. DONG
Affiliation:
Henan Institute of Science and Technology, Key Discipline Open Lab on Crop Molecular Breeding of Henan Institute of Higher Learning, Cotton Research Institute, Xinxiang 453003, Henan, China
Q. WANG*
Affiliation:
Henan Institute of Science and Technology, Key Discipline Open Lab on Crop Molecular Breeding of Henan Institute of Higher Learning, Cotton Research Institute, Xinxiang 453003, Henan, China
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

Cotton plant architecture is an important agronomic trait affecting yield and quality. In the present study, two F2:3 upland cotton (Gossypium hirsutum L.) populations were developed from Baimian2/TM-1 and Baimian2/CIR12 to map quantitative trait loci (QTL) for cotton plant architecture traits using simple sequence repeat (SSR) markers. A total of 73 QTL (37 significant and 36 suggestive) affecting plant architecture traits were detected in both populations. Four common QTL, qTFN-17 for total fruit nodes, qFBN-17 for fruit branch nodes, qFBL-17 for fruit branch length and qTFB-17a/qTFB-17b (qTFB-17) for total fruit branches, were found across the two populations. These common QTL should have high reliability and could be used for marker-assisted selection (MAS) to facilitate cotton plant architecture. The two common QTL, qTFN-17 and qFBL-17, were especially significant in both populations, and moreover, they explained >0·100 of the phenotypic variation in at least one population. These two QTL should be considered preferentially for MAS. The synergistic alleles and the negative alleles could be utilized in cotton plant architecture breeding programmes according to specific breeding objectives.

Type
Crops and Soils Research Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ai, N. J., Zhu, X. X., Guan, R. Z., Zhao, J. J. & Zhang, T. Z. (2010). Genetic analysis of major locus group constitutions of growth stages in upland cotton. Scientia Agricultura Sinica 43, 41404148.Google Scholar
Basten, C. J., Weir, B. S., & Zeng, Z. B. (2001). QTL Cartographer: A Reference Manual and Tutorial for QTL Mapping, Version 1.15. Raleigh, NC: Department of Statistics, North Carolina State University.Google Scholar
Chen, P., Jiang, L., Yu, C. Y., Zhang, W., Wang, J. K. & Wan, J. M. (2008). The identification and mapping of a tiller angle QTL on rice chromosome 9. Crop Science 48, 17991806.CrossRefGoogle Scholar
Churchill, G. A. & Doerge, R. W. (1994). Empirical threshold values for quantitative trait mapping. Genetics 138, 963971.Google Scholar
De Vicente, M. C. & Tanksley, S. D. (1993). QTL analysis of transgressive segregation in an interspecific tomato cross. Genetics 134, 585596.Google Scholar
Guo, W. Z., Zhang, T. Z., Ding, Y. Z., Zhu, Y. C., Shen, X. L. & Zhu, X. F. (2005). Molecular marker assisted selection and pyramiding of two QTL for fiber strength in upland cotton. Acta Genetica Sinica 32, 12751285.Google ScholarPubMed
Guo, W. Z., Cai, C. P., Wang, C. B., Han, Z. G., Song, X. L., Wang, K., Niu, X. W., Wang, C., Lu, K. Y., Shi, S. & Zhang, T. Z. (2007). A microsatellite-based, gene-rich linkage map reveals genome structure, function, and evolution in Gossypium. Genetics 176, 527541.CrossRefGoogle ScholarPubMed
Han, Z. G., Guo, W. Z., Song, X. L. & Zhang, T. Z. (2004). Genetic mapping of EST-derived microsatellites from the diploid Gossypium arboreum in allotetraploid cotton. Molecular Genetics and Genomics 272, 308327.CrossRefGoogle ScholarPubMed
Jiang, C. X., Wright, R. J., El-Zik, K. M. & Paterson, A. H. (1998). Polyploid formation created unique avenues for response to selection in Gossypium (cotton). Proceedings of the National Academy of Sciences USA 95, 44194424.CrossRefGoogle ScholarPubMed
Jiao, Y. Q., Wang, Y. H., Xue, D. W., Wang, J., Yan, M. X., Liu, G. F., Dong, G. J., Zeng, D. L., Lu, Z. F., Zhu, X. D., Qian, Q. & Li, J. Y. (2010). Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nature Genetics 42, 541554.Google Scholar
Jin, J., Huang, W., Gao, J. P., Yang, J., Shi, M., Zhu, M. Z., Luo, D. & LIN, H. X. (2008). Genetic control of rice plant architecture under domestication. Nature Genetics 40, 13651369.Google Scholar
Kanbe, T., Sasaki, H., Aoki, N., Yanagishi, T., Ebitani, T., Yano, M. & Ohsugi, R. (2008). Identification of QTLs for improvement of plant type in rice (Oryza sativa L.) using Koshihikari/Kasalath chromosome segment substitution lines and backcross progeny F2 population. Plant Production Science 11, 447456.CrossRefGoogle Scholar
Kohel, R. J., Richmond, T. R. & Lewis, C. F. (1970). Texas marker-1: description of a genetic standard for Gossypium hirsutum L. Crop Science 10, 670671.CrossRefGoogle Scholar
Ku, L. X., Zhao, W. M., Zhang, J., Wu, L. C., Wang, C. L., Wang, P. A., Zhang, W. Q. & Chen, Y. H. (2010). Quantitative trait loci mapping of leaf angle and leaf orientation value in maize (Zea mays L.). Theoretical and Applied Genetics 121, 951959.CrossRefGoogle ScholarPubMed
Lander, E. & Kruglyak, K. (1995). Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nature Genetics 11, 241247.CrossRefGoogle ScholarPubMed
Li, C. Q., Guo, W. Z., Ma, X. L. & Zhang, T. Z. (2008). Tagging and mapping of QTL for yield and its components in upland cotton (Gossypium hirsutum L.) population with varied lint percentage. Cotton Science 20, 163169.Google Scholar
Li, C. Q., Wang, Q. L., Dong, N., Fu, Y. Z., Zhang, J. B. & Lian, X. D. (2010). Quantitative inheritance for main plant architecture traits of upland cotton variety Baimian 1. Cotton Science 22, 415421.Google Scholar
Li, C. Q., Li, Y. Q., Wang, Q. L., Dong, N. & Zhang, J. B. (2011). Quantitative study of growth period and yield traits in upland cotton (G. hirsutum L.) under different ecological environments. Acta Agriculturae Boreali-Sinica 26, 140145.Google Scholar
Li, P. J., Wang, Y. H., Qian, Q., Fu, Z. M., Wang, M., Zeng, D. L., Li, B. H., Wang, X. J. & LI, J. Y. (2007). LAZY1 controls rice shoot gravitropism through regulating polar auxin transport. Cell Research 17, 402410.Google Scholar
Liu, G., Xu, S. B., Ni, Z. F., Xie, C. J., Qin, D. D., Li, J., Lu, L. H., Zhang, J. P., Peng, H. R. & Sun, Q. X. (2011). Molecular dissection of plant height QTLs using recombinant inbred lines from hybrids between common wheat (Triticum aestivum L.) and spelt wheat (Triticum spelta L.). Chinese Science Bulletin 56, 18971903.Google Scholar
McCouch, S. R., Cho, Y. G., Yano, M., Paul, E., Blinstrub, M., Morishima, H. & Kinoshita, T. (1997). Report on QTL nomenclature. Rice Genetics Newsletters 14, 1113.Google Scholar
Mei, M., Syed, N. H., Gao, W., Thaxton, P. M., Smith, C. W., Stelly, D. M. & Chen, Z. J. (2004). Genetic mapping and QTL analysis of fiber-related traits in cotton (Gossypium). Theoretical and Applied Genetics 108, 280291.Google Scholar
Nguyen, T. B., Giband, M., Brottier, P., Risterucci, A. M. & Lacape, J. M. (2004). Wide coverage of the tetraploid cotton genome using newly developed microsatellite markers. Theoretical and Applied Genetics 109, 167175.Google Scholar
Paterson, A. H., Brubaker, C. & Wendel, J. F. (1993). A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Molecular Biology Reporter 11, 122127.Google Scholar
Peng, J., Richards, D. E., Hartley, N. M., Murphy, G. P., Devos, K. M., Flintham, J. E., Beales, J., Fish, L. J., Worland, A. J., Pelica, F., Sudhakar, D., Christou, P., Snape, J. W., Gale, M. D. & Harberd, N. P. (1999). ‘Green Revolution’ genes encode mutant gibberellin response modulators. Nature 400, 256261.Google Scholar
Qin, H. D., Guo, W. Z., Zhang, Y. M. & Zhang, T. Z. (2008). QTL mapping of yield and fiber traits based on a four-way cross population in Gossypium hirsutum L. Theoretical and Applied Genetics 117, 883894.Google Scholar
Qin, Y. S., Liu, R. Z., Mei, H. X., Zhang, T. Z. & Guo, W. Z. (2009). QTL mapping for yield traits in upland cotton (Gossypium hirsutum L.). Acta Agronomica Sinica 35, 18121821.Google Scholar
Reinhardt, D. & Kuhlemeier, C. (2002). Plant architecture. EMBO Reports 3, 846851.Google Scholar
Shen, X. L., Guo, W. Z., Zhu, X. F., Yuan, Y. L., Yu, J. Z., Kohel, R. J. & Zhang, T. Z. (2005). Molecular mapping of QTLs for fiber qualities in three diverse lines in upland cotton using SSR markers. Molecular Breeding 15, 169181.Google Scholar
Shen, X. L., Guo, W. Z., Lu, Q. X., Zhu, X. F., Yuan, Y. L. & Zhang, T. Z. (2007). Genetic mapping of quantitative trait loci for fiber quality and yield trait by RIL approach in upland cotton. Euphytica 155, 371380.Google Scholar
Song, X. L. & Zhang, T. Z. (2009). Quantitative trait loci controlling plant architectural traits in cotton. Plant Science 177, 317323.CrossRefGoogle Scholar
Sun, F. D., Zhang, J. H., Wang, S. F., Gong, W. K., Shi, Y. Z., Liu, A. Y., Li, J. W., Gong, J. W., Shang, H. H. & Yuan, Y. L. (2012). QTL mapping for fiber quality traits across multiple generations and environments in upland cotton. Molecular Breeding 30, 569582.Google Scholar
Tan, L. W. & Liu, Z. D. (1990). Research on selection and varietal traits of Zhongmian 12. Scientia Agriculture Sinica 23, 1219.Google Scholar
Tang, J. H., Teng, W. T., Yan, J. B., MA, X. Q., Meng, Y. J., Dai, J. R. & Li, J. S. (2007). Genetic dissection of plant height by molecular markers using a population of recombinant inbred lines in maize. Euphytica 155, 117124.Google Scholar
Thumma, B. R., Southerton, S. G., Bell, J. C., Owen, J. V., Henery, M. L. & Moran, G. F. (2010). Quantitative trait locus (QTL) analysis of wood quality traits in Eucalyptus nitens. Tree Genetics Genomes 6, 305317.CrossRefGoogle Scholar
Van Ooijen, J. W. & Voorrips, R. E. (2001). JoinMapR Version 3.0: Software for the Calculation of Genetic Linkage Maps. Wageningen, The Netherlands: Plant Research International.Google Scholar
Voorrips, R. E. (2006). MapChart 2·2: Software for the Graphical Presentation of Linkage Maps and QTLs. Wageningen, The Netherlands: Plant Research International.Google Scholar
Wang, B. H., Wu, Y. T., Huang, N. T., Zhu, X. F., Guo, W. Z. & Zhang, Z. T. (2006). QTL mapping for plant architecture traits in upland cotton using RILs and SSR markers. Acta Genetica Sinica 33, 161170.CrossRefGoogle ScholarPubMed
Wang, P., Zhou, G. L., Yu, H. H. & Yu, S. B. (2011). Fine mapping a major QTL for flag leaf size and yield-related traits in rice. Theoretical and Applied Genetics 123, 13191330.Google Scholar
Wang, Z. H., Wu, X. S., Ren, Q., Chang, X. P., Li, R. Z. & Jing, R. L. (2010). QTL mapping for developmental behavior of plant height in wheat (Triticum aestivum L.). Euphytica 174, 447458.Google Scholar
Xu, D. L., Cai, Y. L., Lv, X. G., Dai, G. Q., Wang, G. Q., Wang, J. G., Sun, H. Y. & Tan, H. N. (2009). QTL mapping for plant-tape traits in maize. Journal of Maize Science 17, 2731.Google Scholar
Yamamoto, T., Yonemaru, J. & Yano, M. (2009). Towards the understanding of complex traits in rice: substantially or superficially? DNA Research 16, 141154.Google Scholar
Yang, X. C. & Hwa, C. M. (2008). Genetic modification of plant architecture and variety improvement in rice. Heredity 101, 396404.Google Scholar
Yu, S. X. & Huang, Z. M. (1990). Inheritance analysis on earliness components of short season cotton varieties in G. hirsutum. Scientia Agricultura Sinica 23, 4854.Google Scholar
Zeng, Z. B. (1994). Precision mapping of quantitative trait loci. Genetics 136, 14571468.Google Scholar
Zhang, J., Guo, W. Z. & Zhang, T. Z. (2002). Molecular linkage map of allotetraploid cotton (Gossypium hirsutum L.×Gossypium barbadense L.) with a haploid population. Theoretical and Applied Genetics 105, 11661174.Google Scholar
Zhang, P. T., Zhu, X. F., Guo, W. Z., Yu, J. Z. & Zhang, T. Z. (2006). Inheritance and QTLs tagging for ideal plant architecture of Simian 3 using molecular markers. Cotton Science 18, 1318.Google Scholar
Zhang, T. Z., Yuan, Y. L., Yu, J., Guo, W. Z. & Kohel, R. J. (2003). Molecular tagging of a major QTL for fiber strength in upland cotton and its marker-assisted selection. Theoretical and Applied Genetics 106, 262268.Google Scholar
Zhu, G. L., Wang, C. H., Guo, X. H., Gao, W. K. & Gan, Y. Y. (2008). The preliminary research on the growth characteristics of Baimian2. Henan Agriculture Science 15, 4750.Google Scholar