Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T21:18:02.216Z Has data issue: false hasContentIssue false

Proceedings of the Thirty-ninth Meeting of the Agricultural Research Modellers' Group

Published online by Cambridge University Press:  08 October 2007

L. A. CROMPTON
Affiliation:
School of Agriculture, Policy and Development, University of Reading, Whiteknights, PO Box 237, Reading RG6 6AR, UK
T. R. WHEELER
Affiliation:
School of Agriculture, Policy and Development, University of Reading, Whiteknights, PO Box 237, Reading RG6 6AR, UK

Abstract

This group, which is concerned with the applications of mathematics to agricultural science, was formed in 1970 and has since met at approximately yearly intervals in London for one-day meetings. The thirty-ninth meeting of the group, chaired by Professor N. Crout of the University of Nottingham, was held in the Kohn Centre at the Royal Society, 6 Carlton House Terrace, London on Friday, 30 March 2007 when the following papers were read.

Type
Abstracts of Communications
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allison, H. E. & Hobbs, R. J. (2004). Resilience, adaptive capacity, and the ‘Lock-in Trap’ of the Western Australian agricultural region. Ecology and Society 9, No. 1, Art. 3. Available online at http://www.ecologyandsociety.org/vol9/iss1/art3 (verified 26/7/07).Google Scholar
Antle, J. M., Capalbo, S. M., Elliott, E. T., Hunt, H. W., Mooney, S. & Paustian, K. H. (2001). Research needs for understanding and predicting the behaviour of managed ecosystems: lessons from the study of agroecosystems. Ecosystems 4, 723735.CrossRefGoogle Scholar
Bak, P. (1994). Self-organized criticality: a holistic view of nature. In Complexity: Metaphors, Models, and Reality (Eds Cowan, G., Pines, D. & Meltzer, D.), pp. 477496. Reading, MA: Addison-Wesley.Google Scholar
Balmann, A., Happe, K., Kellermann, K. & Kleingarn, A. (2002). Adjustment costs of agri-environment policy switchings: an agent-based analysis of the German region Hohenlohe. In Complexity and Ecosystem Management: The Theory and Practice of Multi-agent Systems (Ed. Janssen, M.), pp. 127157. Cheltenham, UK: Edward Elgar.Google Scholar
Berkes, F., Colding, J. & Folke, C. (2003). Navigating Social-ecological Systems: Building Resilience for Complexity and Change. Cambridge, UK: Cambridge University Press.Google Scholar
Bousquet, F., Barreteau, O., D'aquino, P., Etienne, M., Boissau, S., Aubert, S., Le Page, C., Babin, D. & Castella, J.-C. (2002). Multi-agent systems and role games: collective learning processes for ecosystem management. In Complexity and Ecosystem Management: The Theory and Practice of Multi-agent Systems (Ed. Janssen, M.), pp. 248285. Cheltenham, UK: Edward Elgar.CrossRefGoogle Scholar
Bousquet, F. & Le Page, C. (2004). Multi-agent simulations and ecosystem management: a review. Ecological Modelling 176, 313332.CrossRefGoogle Scholar
Deffuant, G., Huet, S., Bousset, J. P., Henriot, J., Amon, G. & Weisbuch, G. (2002). Agent-based simulation of organic farming conversion in Allier département. In Complexity and Ecosystem Management: The Theory and Practice of Multi-agent Systems (Ed. Janssen, M.), pp. 158187. Cheltenham, UK: Edward Elgar.CrossRefGoogle Scholar
Ferber, J. (1999). Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence. Harlow, UK: Addison-Wesley Longman.Google Scholar
Gunderson, L. H. & Holling, C. S. (2001). Panarchy. Washington, DC: Island Press.Google Scholar
Gunderson, L. H. & Pritchard, L. Jr. (2002). Resilience and the Behavior of Large Scale Ecosystems, SCOPE Volume 60. Washington, DC: Island Press.Google Scholar
Hare, M. & Deadman, P. (2004). Further towards a taxonomy of agent-based simulation models in environmental management. Mathematics and Computers in Simulation 64, 2540.CrossRefGoogle Scholar
Hoffmann, M., Kelley, H. & Evans, T. (2002). Simulating land-cover change in South-Central Indiana: an agent-based model of deforestation and afforestation. In Complexity and Ecosystem Management: The Theory and Practice of Multi-agent Systems (Ed. Janssen, M.), pp. 218247. Cheltenham, UK: Edward Elgar.CrossRefGoogle Scholar
Huston, M., Deangelis, D. & Post, W. (1988). New computer models unify ecological theory – computer-simulations show that many ecological patterns can be explained by interactions among individual organisms. Bioscience 38, 682691.Google Scholar
Kay, J., Regier, H., Boyle, M. & Francis, G. (1999). An ecosystem approach for sustainability: addressing the challenge for complexity. Futures 31, 721742.Google Scholar
Kuhlman, T. (2004). Land use simulation in economic modelling. In Proceedings of the LUCC, EFEIA & WOTRO International Workshop on Integrated Assessment of the Land System: The Future of Land Use, 28–30 October 2004, Amsterdam, the Netherlands. Amsterdam: Institute for Environmental Studies.Google Scholar
Lim, K., Deadman, P. J., Moran, E., Brondizio, E. & Mccracken, S. (2002). Agent-based simulations of household decision-making and land-use change near Altamira, Brazil. In Integrating Geographic Information Systems and Agent-based Modelling Techniques. Santa Fe Institute Studies in the Sciences of Complexity (Ed. Gimblett, H. R.), pp. 277310. New York: Oxford University Press.Google Scholar
Lynam, T. (2002). Scientific measurements and villagers' knowledge: an integrative multi-agent model from the semi-arid areas of Zimbabwe. In Complexity and Ecosystem Management: The Theory and Practice of Multi-agent Systems (Ed. Janssen, M.), pp. 188217. Cheltenham, UK: Edward Elgar.Google Scholar
Matthews, R. B. (2002). Where to now with crop modelling? In Crop-Soil Simulation Models: Applications in Developing Countries (Eds Matthews, R. B. & Stephens, W.), pp. 209230. Wallingford, UK: CAB International.Google Scholar
Matthews, R. B. (2006). The People and Landscape Model (PALM): towards full integration of human decision-making and biophysical simulation models. Ecological Modelling 194, 329343.CrossRefGoogle Scholar
Matthews, R. B. & Pilbeam, C. J. (2005 a). Modelling the long-term productivity and soil fertility of maize/millet cropping systems in the mid-hills of Nepal. In Proceedings of MODSIM 2005 International Congress on Modelling and Simulation, 9–12 December 2005, Melbourne, Australia (Eds Zerger, A. & Argent, R. M.), pp. 21302137. Melbourne, Australia: Modelling and Simulation Society of Australia and New Zealand.Google Scholar
Matthews, R. B. & Pilbeam, C. J. (2005 b). Modelling the long-term sustainability of maize/millet cropping systems in the mid-hills of Nepal. Agriculture, Ecosystems and Environment 111, 119139.Google Scholar
Matthews, R. B., Polhill, J. G., Gilbert, N. & Roach, A. (2005). Integrating agent-based social models and biophysical models. In Proceedings of MODSIM 2005 International Congress on Modelling and Simulation, 9–12 December 2005, Melbourne, Australia (Eds Zerger, A. & Argent, R. M.), pp. 16171623. Melbourne, Australia: Modelling and Simulation Society of Australia and New Zealand.Google Scholar
Moss, S., Pahl-Wostl, C. & Downing, T. (2001). Agent-based integrated assessment modelling: the example of climate change. Integrated Assessment 2, 1730.CrossRefGoogle Scholar
Parker, D. C., Manson, S. M., Janssen, M. A., Hoffmann, M. J. & Deadman, P. (2002). Multi-agent systems for the simulation of land-use and land-cover change: a review. Annals of the Association of American Geographers 93, 316340.Google Scholar
Parton, W. J., Stewart, J. W. B. & Cole, C. V. (1988). Dynamics of C, N, P and S in grassland soils: a model. Biogeochemistry 5, 109131.Google Scholar
Pinker, S. (2002). The Blank Slate. London: Penguin Books.Google Scholar
Richards, E. (2000). The Highland Clearances: People, Landlords, and Rural Turmoil. Edinburgh: Birlinn Publishers.Google Scholar
Shorter, R., Lawn, R. J. & Hammer, G. L. (1991). Improving genotypic adaptation in crops – a role for breeders, physiologists and modellers. Experimental Agriculture 27, 155175.CrossRefGoogle Scholar
Thornley, J. H. M. (2006). Agricultural modelling: a possible road map. Journal of Agricultural Science, Cambridge 144, 449456.Google Scholar
van den Belt, M. (2004). Mediated Modelling: A Systems Dynamic Approach to Environmental Consensus Building. Washington, DC: Island Press.Google Scholar
Walker, B., Holling, C. S., Carpenter, S. R. & Kinzig, A. (2004). Resilience, adaptability and transformability in social-ecological systems. Ecology and Society 9, No. 2, Art. 5. Available online at http://www.ecologyandsociety.org/vol9/iss2/art5 (verified 24/07/07).CrossRefGoogle Scholar
Walker, B. & Meyers, J. A. (2004). Thresholds in ecological and social-ecological systems: a developing database. Ecology and Society 9, No. 2, Art. 3. Available online at http://www.ecologyandsociety.org/vol9/iss2/art3 (verified 24/07/07).Google Scholar
Edelstein, L. (1982). The propagation of fungal colonies: a model for tissue growth. Journal of Theoretical Biology 98, 679701.CrossRefGoogle Scholar
Jakobsen, I., Abbott, L. K. & Robson, A. D. (1992) External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subtarraneum L. 1. Spread of hyphae and phosphorus inflow into roots. New Phytologist 120, 371380.Google Scholar
Tinker, P. B. & Nye, P. H. (2000). Solute Movement in the Rhizosphere. New York: Oxford University Press.CrossRefGoogle Scholar
Roose, T., Fowler, A. C. & Darrah, P. R. (2001) Mathematical model of plant nutrient uptake. Journal of Mathematical Biology 42, 347360.CrossRefGoogle ScholarPubMed
Smith, S. E., Smith, F. A. & Jakobsen, I. (2003) Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiology 133, 1620.CrossRefGoogle ScholarPubMed
Schnepf, A. & Roose, T. (2006) Modelling the contribution of arbuscular mycorrhizal fungi to plant phosphate uptake. New Phytologist 171, 669682.Google Scholar
Daamen, R. A., Stubbs, R. W. & Stol, W. (1992). Surveys of cereal diseases and pests in the Netherlands. 4. Occurrence of powdery mildew and rusts in winter wheat European Journal of Plant Pathology 98, 301312.Google Scholar
HGCA (2007). The Wheat Disease Management Guide. London: Home Grown Cereals Authority.Google Scholar
Papastamati, K. & van den Bosch, F. (2007). The sensitivity of the epidemic growth rate to weather variables, with an application to yellow rust on wheat. Phytopathology 97, 202210.CrossRefGoogle Scholar
Zadoks, J. C. (1961). Yellow rust on wheat studies in epidemiology and physiologic specialization. Tijdschrift over Plantenziekten 67, 69256.Google Scholar
Gowing, J. W., Konukcu, F. & Rose, D. A. (2006). Evaporative flux from a shallow watertable: the influence of a vapour–liquid phase transition. Journal of Hydrology 321, 7789.Google Scholar
Konukcu, F., Gowing, J. W. & Rose, D. A. (2006). Dry drainage: a sustainable solution to waterlogging and salinity problems in irrigation areas? Agricultural Water Management 83, 112.CrossRefGoogle Scholar
Rose, D. A., Konukcu, F. & Gowing, J. W. (2005). Effect of watertable depth on evaporation and salt accumulation from saline groundwater. Australian Journal of Soil Research 43, 565573.CrossRefGoogle Scholar
Watson, R. T. (2001). Climate Change 2001: Synthesis Report. Cambridge, UK: Cambridge University Press.Google Scholar
Crampin, E. J., Gaffney, E. A. & Maini, P. K. (1999). Reaction and diffusion on growing domains: scenarios for robust pattern formation. Bulletin of Mathematical Biology 61, 10931120.Google Scholar
Peirs, A., Scheerlinck, N., Berna, Perez A., Jancsók, P. & Nicolaï, B. M. (2004). Uncertainty analysis and modelling of the starch index determination during apple fruit maturation. Postharvest Biology and Technology 26, 199207.CrossRefGoogle Scholar
Scheerlinck, N., Peirs, A., Desmet, M., Schenk, A. & Nicolaï, B. M. (2004). Modelling fruit characteristics during apple maturation: a stochastic approach. Journal of Mathematical and Computer Modelling of Dynamical Systems 10, 149168.Google Scholar
Challinor, A. J., Wheeler, T. R., Slingo, J. M., Craufurd, P. Q. & Grimes, D. I. F. (2004). Design and optimisation of a large-area process-based model for annual crops. Agricultural and Forest Meteorology 124, 99120.Google Scholar
Osborne, T. O., Lawrence, D. M., Challinor, A. J., Slingo, J. M. & Wheeler, T. R. (2007). Development and assessment of a coupled crop-climate model. Global Change Biology 13, 169183.Google Scholar
Bannayan, M. (2001). BAMnut: a crop simulation model for bambara groundnut. Agricultural Sciences and Technology 15, 101110.Google Scholar
Boote, K. J., Jones, J. W., Hoogenboom, G. & Pickering, N. B. (1998). The CROPGRO model for grain legumes. In Understanding Options for Agricultural Production (Eds Tsuji, G. Y., Hoogenboom, G. & Thornton, P. K.), pp. 99128. Dordrecht, the Netherlands: Kluwer Academic Publishers.CrossRefGoogle Scholar
Brink, M., Sibuga, K. P., Tarimo, A. J. P. & Ramolemana, G. M. (2000). Quantifying photothermal influences on reproductive development in bambara groundnut (Vigna subterranea): models and their validation. Field Crops Research 66, 114.CrossRefGoogle Scholar
Schwinning, S. & Parsons, A. J. (1996). A spatially explicit population model of stoloniferous N-fixing legumes in mixed pasture with grass. Journal of Ecology 84, 815826.CrossRefGoogle Scholar