Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T10:25:02.547Z Has data issue: false hasContentIssue false

Potential of the doubly labelled water method for estimating heat production in farm animals

Published online by Cambridge University Press:  27 March 2009

P. Haggarty
Affiliation:
Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB2 9SB, UK

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Review
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Blaxter, K. L. (1990). Energy Metabolism in Animals and Man. Cambridge: Cambridge University Press.Google Scholar
Blaxter, K. L. & Clapperton, J. L. (1965). Prediction of the amount of methane produced by ruminants. British Journal of Nutrition 19, 511522.CrossRefGoogle ScholarPubMed
Coward, W. A., Prentice, A. M., Murgatroyd, P. R., Davies, H. L., Cole, T. J., Sawyer, M., Goldberg, G. R., Halliday, D. A. & MacNamara, J. P. (1985). Measurement of CO2 and water production rates in man using 2H218O-labelled H2O; comparison between calorimeter and isotope values. In Human Energy Metabolism, European Nutrition Report No 5 (Ed. Es, A. J. H. van), pp. 126128. Den Haag: CIP-gegevens koninkijke.Google Scholar
Coward, W. A., Cole, T. J. & Franklin, M. F. (1990). Calculation of pool sizes and flux rates. In The Doubly-labelled Water Method of Measuring Energy Expenditure (Ed. Prentice, A. M.), pp. 4868. Vienna: International Atomic Energy Agency.Google Scholar
Fancy, S. G., Blanchard, J. M., Holleman, D. F., Kokjer, K. J. & White, R. G. (1986). Validation of the doubly labelled water method using a ruminant. American Journal of Physiology 251, (Regulatory Integrative Comp. Physiol. 20), R143R149.Google ScholarPubMed
Haggarty, P. (1990). The effect of isotope sequestration and exchange. In The Doubly-labelled Water Method of Measuring Energy Expenditure (Ed. Prentice, A. M.), pp. 114146. Vienna: International Atomic Energy Agency.Google Scholar
Haggarty, P. & McGaw, B. A. (1988). Non-restrictive methods of measuring energy expenditure. Proceedings of the Nutrition Society 47, 365374.CrossRefGoogle ScholarPubMed
Haggarty, P., McGaw, B. A. & Franklin, M. F. (1988). Measurement of fractionated water loss and CO2 production using triply labelled water. Journal of Theoretical Biology 134, 291308.CrossRefGoogle ScholarPubMed
Haggarty, P., McGaw, B. A., Fuller, M. F., Christie, S. L. & Wong, W. W. (1991). Water hydrogen incorporation into body fat in pigs: effect on the double/triple labelled water methods. American Journal of Physiology 260 (Regulatory Integrative Comp. Physiol. 29), R627R634.Google Scholar
Houseman, R. A., McDonald, I. & Pennie, K. (1973). The measurement of total body water in living pigs by deuterium oxide dilution and its relation to body composition. British Journal of Nutrition 30, 149156.CrossRefGoogle ScholarPubMed
IDECG. (1990). Recommended abbreviations. In The Doubly-labelled Water Method of Measuring Energy Expenditure (Ed. Prentice, A. M.), pp. 1719. Vienna: International Atomic Energy Agency.Google Scholar
James, W. P. T., Haggarty, P. & McGaw, B. A. (1988). Are the new methods providing answers to the old questions? Proceedings of the Nutrition Society 47, 195208.CrossRefGoogle Scholar
Klein, P. D., James, W. P. T., Wong, W. W., Irving, C. S., Murgatroyd, P. R., Cabrera, M., Dallosso, H. M., Klein, E. R. & Nichols, B. L. (1984). Calorimetric validation of the doubly labelled water method for determination of energy expenditure in man. Human Nutrition: Clinical Nutrition 38C, 95106.Google Scholar
Lifson, N. & McClintock, R. (1966). Theory of the use of turnover rates of body water for measuring energy and material balance. Journal of Theoretical Biology 12, 4674.CrossRefGoogle ScholarPubMed
Lifson, N., Gordon, G. B. & McClintock, R. (1955). Measurement of total carbon dioxide production by means of D218O. Journal of Applied Physiology 7, 704710.CrossRefGoogle Scholar
McLean, J. A. (1974). Loss of heat by evaporation. Heat Loss from Animals and Man (Eds Monteith, J. L. & Mount, L. E.), pp. 1931. London: Butterworths.CrossRefGoogle Scholar
McLean, J. A. & Tobin, G. (1987). Human and Animal Calorimetry. Cambridge: Cambridge University Press.Google Scholar
Midwood, A. J. (1990). Application of the doubly labelled water method for measuring CO2 production to sheep. PhD thesis. University of Aberdeen.Google Scholar
Midwood, A. J., Haggarty, P., McGaw, B. A. & Robinson, J. J. (1989). Methane production in ruminants: its effect on the doubly labelled water method. American Journal of Physiology 257 (Regulatory Integrative Comp. Physiol. 26), R1488R1495.Google Scholar
Nagy, K. A. (1980). CO2 production in animals: analysis of potential errors in the doubly labelled water method. American Journal of Physiology 238 (Regulatory Integrative Comp. Physiol. 19), R466R473.Google Scholar
Searle, T. W. (1970). Body composition in lambs and young sheep and its prediction in vivo from tritiated water space and body weight. Journal of Agricultural Science, Cambridge 74, 357362.CrossRefGoogle Scholar
Schoeller, D. A. (1990 a). Changes in isotopic background. In The Doubly-labelled Water Method of Measuring Energy Expenditure (Ed. Prentice, A. M.), pp. 147165. Vienna: International Atomic Energy Agency.Google Scholar
Schoeller, D. A. (1990 b). Isotope fractionation corrections. In The Doubly-labelled Water Method of Measuring Energy Expenditure (Ed. Prentice, A. M.), pp. 90113. Vienna: International Atomic Energy Agency.Google Scholar
Schoeller, D. A., Ravussin, E., Schutz, Y., Acheson, K. J., Baertschi, P. & Jequier, E. (1986). Energy expenditure by doubly labelled water: validation in humans and proposed calculation. American Journal of Physiology 250 (Regulatory Integrative Comp. Physiol. 19), R823R830.Google ScholarPubMed
Shipley, R. A. & Clark, R. E. (1977). Tracer Methods for in vivo Kinetics. London: Academic Press.Google Scholar
Smith, B. N. & Sykes, A. R. (1974). The effect of route of dosing and method of estimation of tritiated water space on the determination of total body water and the prediction of body fat in sheep. Journal of Agricultural Science, Cambridge 82, 105112.CrossRefGoogle Scholar
Speakman, J. R. & Racey, P. A. (1987). The equilibrium concentration of oxygen-18 in body water: implications for the accuracy of the doubly-labelled water technique and a potential new method of measuring RQ in freeliving animals. Journal of Theoretical Biology 127, 7995.CrossRefGoogle Scholar
Tills, A. R. & Down, A. M. (1962). Measurement of total body water in sheep. Australian Journal of Agricultural Research 13, 335342.CrossRefGoogle Scholar
Whitelaw, F. G., Brockway, J. M. & Reid, R. S. (1972). Measurement of carbon dioxide production in sheep by isotope dilution. Quarterly Journal of Experimental Physiology 57, 3755.CrossRefGoogle ScholarPubMed
Young, B. A. & Corbett, J. L. (1972). Maintenance energy requirement of grazing sheep in relation to herbage availability. Australian Journal of Agricultural Research 23, 5776.CrossRefGoogle Scholar
Young, B. A., Leng, R. A., White, R. G., McClymont, G. L. & Corbett, J. L. (1969). Energy metabolism of farm animals. European Association of Animal Production publication No 12 (Eds Blaxter, K. L., Keilanowski, J. & Thorbek, G.), pp. 435436. Newcastle Upon Tyne: Oriel Press.Google Scholar