Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-03T17:34:02.218Z Has data issue: false hasContentIssue false

Potential impacts of climate change on marine wild capture fisheries: an update

Published online by Cambridge University Press:  23 December 2010

R. I. PERRY*
Affiliation:
Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, BC V9T 6N7, Canada

Summary

This paper provides a brief update on the potential impacts of climate change on marine ecosystems and marine wild capture fisheries based on the scientific literature published since 2007. Current models predict shifts in fish distributions of 45–60 km per decade, with 0·80 of species moving poleward. With a high CO2 emissions scenario, little overall change in the global maximum potential fisheries catch is projected (±1%), although with high spatial variability: decreases of 40% are projected for the tropics, with increases of 30–70% for higher latitudes. Tropical nations appear to be most vulnerable to the impacts of climate change on fisheries production. Coupled atmosphere–ocean–fish production–human society models are beginning to be developed for specific market systems. Results suggest that how society responds can have as large or larger an effect as the strength of the climate impact. Good observations of the impacts of climate change exist for high latitude, coral reef and North Atlantic systems. Management strategies are being developed to address climate change and fisheries, including risk and vulnerability assessment frameworks, pro-active planning with stakeholders regarding potential impacts and responses and examining existing regulations to identify gaps created by altered species distributions (e.g. unregulated fishing in newly ice-free areas). Overall, fisheries governance systems are needed which are flexible and can quickly adapt to changing ecological and human societal conditions. Significant knowledge gaps include a comprehensive and co-ordinated global network of observations to help distinguish climate change from variability, and increased detail in the structure and processes of models. Necessary next steps include reducing the uncertainties of climate impacts models at present, understanding the synergistic effects of multiple stressors and the inclusion of humans into coupled models and socio-economic analyses, in particular at regional and local scales. In the intermediate term, developing nations in tropical regions are likely to be most negatively impacted, whereas developed nations at higher latitudes are most likely to benefit. In the longer term, overall marine food security will depend on the impacts of climate change on marine primary production, for which the present projections are highly uncertain. Adoption of an integrated social–ecological approach that improves the adaptive capacities of ecological and human social systems will help to sustain food security from marine wild capture fisheries.

Type
Foresight Project on Global Food and Farming Futures
Copyright
© Crown Copyright. Published by Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allison, E. H., Perry, A. L., Badjeck, M.-C., Adger, W. N., Brown, K., Conway, D., Halls, A. S., Pilling, G. M., Reynolds, J. D., Andrew, N. L. & Dulvy, N. K. (2009). Vulnerability of national economies to the impacts of climate change on fisheries. Fish and Fisheries 10, 173196.CrossRefGoogle Scholar
Badjeck, M.-C., Allison, E. H., Halls, A. S. & Dulvey, N. K. (2010). Impacts of climate variability and change on fishery-based livelihoods. Marine Policy 34, 375383.CrossRefGoogle Scholar
Barange, M. & Perry, R. I. (2009). Physical and ecological impacts of climate change relevant to marine and inland capture fisheries and aquaculture. In Climate Change Implications for Fisheries and Aquaculture. Overview of Current Scientific Knowledge (Eds Cochrane, K., De Young, C., Soto, D. & Bahri, T.), pp. 7106. FAO Fisheries and Aquaculture Technical Paper. No. 530. Rome: FAO.Google Scholar
Barange, M., Allen, I., Allison, E., Badjeck, M.-C., Blanchard, J., Drakeford, B., Dulvy, N. K., Harle, K., Holmes, R., Holt, J., Jennings, S., Lowe, J., Merino, G., Mullon, C., Pilling, G., Rodwell, L., Tompkins, E., Werner, F. (in pressb). Predicting the impacts and socioeconomic consequences of climate change on global marine ecosystems and fisheries: the QUEST_Fish framework. In World Fisheries: a Social–Ecological Analysis (Eds Ommer, R. E., Perry, R. I., Cury, P. & Cochrane, K.). Fish and Aquatic Resources Series. Oxford: Wiley-Blackwells.Google Scholar
Barange, M., Cheung, W., Merino, G. & Perry, R. I. (in press b). Modelling the potential impacts of climate change and human activities on the sustainability of marine resources. Current Opinion in Environmental Sustainability. doi:10.1016/j.cosust.2010.10.002Google Scholar
Beamish, R. J. (ed.) (2008). Impacts of climate and climate change on the key species in the fisheries in the North Pacific. PICES Scientific Report 35. Sidney, BC, Canada: North Pacific Marine Science Organization (PICES).Google Scholar
Beaugrand, G., Edwards, M., Brander, K., Luczak, C. & Ibanez, F. (2008). Causes and projections of abrupt climate-driven ecosystem shifts in the North Atlantic. Ecology Letters 11, 11571168.CrossRefGoogle ScholarPubMed
Boyce, D. G., Lewis, M. R. & Worm, B. (2010). Global phytoplankton decline over the past century. Nature 466, 591596.CrossRefGoogle ScholarPubMed
Brander, K. (2009). Impacts of climate change on marine ecosystems and fisheries. Journal of the Marine Biological Association of India 51, 113.Google Scholar
Brander, K. (in press). Reconciling biodiversity conservation and marine capture fisheries production. Current Opinion in Environmental Sustainability. doi:10.1016/j.cosust.2010.09.003Google Scholar
Brierley, A. S. & Kingsford, M. J. (2009). Impacts of climate change on marine organisms and ecosystems. Current Biology 19, R602R614.CrossRefGoogle ScholarPubMed
Brookfield, K., Gray, T. & Hatchard, J. (2005). The concept of fisheries-dependent communities: a comparative analysis of four UK case studies: Shetland, Peterhead, North Shields and Lowestoft. Fisheries Research 72, 5569.CrossRefGoogle Scholar
Brown, C. J., Fulton, E. A., Hobday, A. J., Matear, R. J., Possingham, H. P., Bulman, C., Christensen, V., Forrest, R. E., Gehrke, P. C., Gribble, N. A., Griffiths, S. P., Lozano-Montes, H., Martin, J. M., Metcalf, S., Okey, T. A., Watson, R. & Richardson, A. J. (2010). Effects of climate-driven primary production change on marine food webs: implications for fisheries and conservation. Global Change Biology 16, 11941212.CrossRefGoogle Scholar
Brunner, E. J., Jones, P. J. S., Friel, S. & Bartley, M. (2008). Fish, human health and marine ecosystem health: policies in collision. International Journal of Epidemiology 38, 93100.CrossRefGoogle ScholarPubMed
Cheung, W. W. L., Close, C., Lam, V., Watson, R. & Pauly, D. (2008). Application of macroecological theory to predict effects of climate change on global fisheries potential. Marine Ecology Progress Series 365, 187197.CrossRefGoogle Scholar
Cheung, W. W. L., Lam, V. W. Y., Sarmiento, J. L., Kearney, K., Watson, R. & Pauly, D. (2009). Projecting global marine biodiversity impacts under climate change scenarios. Fish and Fisheries 10, 235251.CrossRefGoogle Scholar
Cheung, W. W. L., Lam, V. W. Y., Sarmiento, J. L., Kearney, K., Watson, R., Zeller, D. & Pauly, D. (2010). Large-scale redistribution of maximum catch potential in the global ocean under climate change. Global Change Biology 16, 2435.CrossRefGoogle Scholar
Cooley, S. R. & Doney, S. C. (2009). Anticipating ocean acidification's economic consequences for commercial fisheries. Environmental Research Letters 4, 024007. doi:10.1088/1748–9326/4/2/024007.CrossRefGoogle Scholar
Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A. & Totterdell, I. J. (2000). Acceleration of global warming due to carbon cycle feedbacks in a coupled climate model. Nature 408, 184187.CrossRefGoogle Scholar
Daw, T., Adger, W. N., Brown, K. & Badjeck, M.-C. (2009). Climate change and capture fisheries: potential impacts, adaptation and mitigation. In Climate Change Implications for Fisheries and Aquaculture. Overview of Current Scientific Knowledge (Eds Cochrane, K., De Young, C., Soto, D. & Bahri, T.), pp. 107150. FAO Fisheries and Aquaculture Technical Paper. No. 530. Rome: FAO.Google Scholar
Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. (2009). Ocean acidification: the other CO2 problem. Annual Review of Marine Science 1, 169192.CrossRefGoogle ScholarPubMed
Dulvy, N. K., Rogers, S. I., Jennings, S., Stelzenmüller, V., Dye, S. R. & Skjoldal, H. R. (2008). Climate change and deepening of the North Sea fish assemblage: a biotic indicator of warming seas. Journal of Applied Ecology 45, 10291039.CrossRefGoogle Scholar
FAO (2009). The State of World Fisheries and Aquaculture 2008. Rome: FAO.Google Scholar
Garcia, S. M. & Rosenberg, A. A. (2010). Food security and marine capture fisheries: characteristics, trends, drivers and future perspectives. Philosophical Transactions of the Royal Society B 365, 28692880.CrossRefGoogle ScholarPubMed
Genner, M. J., Sims, D. W., Southward, A. J., Budd, G. C., Masterson, P., Mchugh, M., Rendle, P., Southall, E. J., Wearmouth, V. J. & Hawkins, S. J. (2010). Body size-dependent responses of a marine fish assemblage to climate change and fishing over a century-long scale. Global Change Biology 16, 517527.CrossRefGoogle Scholar
Grafton, R. Q. (2010). Adaptation to climate change in marine capture fisheries. Marine Policy 34, 606615.CrossRefGoogle Scholar
Hannesson, R., Barange, M. & Herrick, S. F. Jr. (eds.) (2006). Climate Change and the Economics of the World's Fisheries. Cheltenham, UK: Edward Elgar.CrossRefGoogle Scholar
Hannesson, R. (2007). Introduction to special issue: economic effects of climate change on fisheries. Natural Resource Modeling 20, 157162.CrossRefGoogle Scholar
Hashioka, T. & Yamanaka, Y. (2007). Ecosystem change in the western North Pacific associated with global warming using 3D-NEMURO. Ecological Modelling 202, 95104.CrossRefGoogle Scholar
Helmuth, B. (2009). From cells to coastlines: how can we use physiology to forecast the impacts of climate change? Journal of Experimental Biology 212, 753760.CrossRefGoogle ScholarPubMed
Hiddink, J. G. & Ter Hofstede, R. (2008). Climate induced increases in species richness of marine fishes. Global Change Biology 14, 453460.CrossRefGoogle Scholar
Higgason, K. D. & Brown, M. (2009). Local solutions to manage the effects of global climate change on a marine ecosystem: a process guide for marine resource managers. ICES Journal of Marine Science 66, 16401646.CrossRefGoogle Scholar
Hoegh-Guldberg, O. & Bruno, J. F. (2010). The impact of climate change on the world's marine ecosystems. Science 328, 15231528.CrossRefGoogle ScholarPubMed
Hoegh-Guldberg, O., Mumby, P. J., Hooten, A. J., Steneck, R. S., Greenfield, P., Gomez, E., Harvell, C. D., Sale, P. F., Edwards, A. J., Caldeira, K., Knowlton, N., Eakin, C. M., Iglesias-Prieto, R., Muthiga, N., Bradbury, R. H., Dubi, A. & Hatziolos, M. E. (2007). Coral reefs under rapid climate change and ocean acidification. Science 318, 17371742.CrossRefGoogle ScholarPubMed
Hoegh-Guldberg, O., Hughes, T., Anthony, K., Caldeira, K., Hatziolos, M. & Kleypas, J. (2009). Coral reefs and rapid climate change: impacts, risks and implications for tropical societies. IOP Conference Series: Earth and Environmental Science 6, 302004.Google Scholar
Hollowed, A. B., Barange, M., Ito, S.-I., Kim, S. & Loeng, H. (2010). 2010 Symposium on “Effects of climate change on fish and fisheries”. PICES Press 18, 411.Google Scholar
IOC (2009). The Global Ocean Observing System – A Summary for Policy Makers. Paris, France: IOC/UNESCO.Google Scholar
Jennings, S., Mélin, F., Blanchard, J. L., Forster, R. M., Dulvy, N. K. & Wilson, R. W. (2008). Global-scale predictions of community and ecosystem properties from simple ecological theory. Proceedings of the Royal Society B 275, 13751383.CrossRefGoogle ScholarPubMed
Johnson, J. E. & Welch, D. J. (2010). Marine fisheries management in a changing climate: a review of vulnerability and future options. Reviews in Fisheries Science 18, 106124.CrossRefGoogle Scholar
Last, P. R., White, W. T., Gledhill, D. C., Hobday, A. J., Brown, R., Edgar, G. J. & Pecl, G. (in press). Long-term shifts in abundance and distribution of a temperate fish fauna: a response to climate change and fishing practices. Global Ecology and Biogeography. doi:10.1111/j.1466-8238.2010.00575.xGoogle Scholar
Lindegren, M., Möllmann, C., Nielsen, A., Brander, K., Mackenzie, B. R. & Stenseth, N. Chr. (2010). Ecological forecasting under climate change: the case of Baltic cod. Proceedings of the Royal Society B 277, 21212130.CrossRefGoogle ScholarPubMed
Mcilgorm, A., Hanna, S., Knapp, G., Lefloc'h, P., Millerd, F. & Pan, M. (2010). How will climate change alter fishery governance? Insights from seven international case studies. Marine Policy 34, 170177.CrossRefGoogle Scholar
Merino, G., Barange, M. & Mullon, C. (2010 a). Climate variability and change scenarios for a marine commodity: modelling small pelagic fish, fisheries and fishmeal in a globalized market. Journal of Marine Systems 81, 196205.CrossRefGoogle Scholar
Merino, G., Barange, M., Mullon, C. & Rodwell, L. (2010 b). Impacts of global environmental change and aquaculture expansion on marine ecosystems. Global Environmental Change 20, 586596. doi:10.1016/j.gloenvcha.2010.07.008.CrossRefGoogle Scholar
Morán, X. A. G., López-Urrutia, A., Calvo-Diaz, A. & Li, W. K. W. (2010). Increasing importance of small phytoplankton in a warmer ocean. Global Change Biology 16, 11371144.CrossRefGoogle Scholar
Mueter, F. J. & Litzow, M. A. (2008). Sea ice retreat alters the biogeography of the Bering Sea continental shelf. Ecological Applications 18, 309320.CrossRefGoogle ScholarPubMed
Munday, P. L., Jones, G. P., Pratchett, M. S. & Williams, A. J. (2008). Climate change and the future for coral reef fishes. Fish and Fisheries 9, 261285.CrossRefGoogle Scholar
O'Connor, M. I., Piehler, M. F., Leech, D. M., Anton, A. & Bruno, J. F. (2009). Warming and resource availability shift food web structure and metabolism. PLoS Biology 7, e1000178. doi:10.1371/journal.pbio.1000178.CrossRefGoogle ScholarPubMed
Parry, M. L., Canziani, O. F. & Palutikof, J. P. (2007). Technical Summary. In Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Eds Parry, M. L., Canziani, O. F., Palutikof, J. P., van der Linden, P. J. & Hanson, C. E.), pp. 2378. Cambridge, UK: Cambridge University Press.Google Scholar
Perry, R. I., Ommer, R. E., Allison, E. H., Badjeck, M.-C., Barange, M., Hamilton, L., Jarre, A., Quinones, R. A. & Sumaila, U. R. (2010 a). Interactions between changes in marine ecosystems and human communities. In Marine Ecosystems and Global Change (Eds Barange, M., Field, J. G., Harris, R. P., Hofmann, E. E., Perry, R. I. & Werner, F.), pp. 221252. Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
Perry, R. I., Cury, P., Brander, K., Jennings, S., Möllmann, C. & Planque, B. (2010 b). Sensitivity of marine systems to climate and fishing: concepts, issues and management responses. Journal of Marine Systems 79, 427435.CrossRefGoogle Scholar
Perry, R. I., Barange, M. & Ommer, R. E. (in press). Global changes in marine systems: a social-ecological approach. Progress in Oceanography. doi:10.1016/j.pocean.2010.09.010Google Scholar
Pinnegar, J. K., Cheung, W. W. L. & Heath, M. (2010). Fisheries. In MCCIP Annual Report Card 2010–2011, MCCIP Science Review. Lowestoft, UK: MCCIP. Available online at: www.mccip.org.uk/arc (verified 7 October 2010).Google Scholar
Planque, B., Fromentin, J.-M., Cury, P., Drinkwater, K., Jennings, S., Perry, R. I. & Kifani, S. (2010). How does fishing alter marine populations and ecosystem sensitivity to climate? Journal of Marine Systems 79, 403417.CrossRefGoogle Scholar
Polovina, J. J., Howell, E. A. & Abecassis, M. (2008). Ocean's least productive waters are expanding. Geophysical Research Letters 35, L03618.CrossRefGoogle Scholar
Pratchett, M. S., Munday, P. L., Wilson, S. K., Graham, N. A. J., Cinner, J. E., Bellwood, D. R., Jones, G. P., Polunin, N. V. C. & Mcclanahan, T. R. (2008). Effects of climate-induced coral bleaching on coral-reef fishes: ecological and economic consequences. Oceanography and Marine Biology Annual Reviews 46, 251296.Google Scholar
Richardson, A. J. (2008). In hot water: zooplankton and climate change. ICES Journal of Marine Science 65, 279295.CrossRefGoogle Scholar
Rijnsdorp, A. D., Peck, M. A., Engelhard, G. H., Möllmann, C. & Pinnegar, J. K. (2009). Resolving the effect of climate change on fish populations. ICES Journal of Marine Science 66, 15701583.CrossRefGoogle Scholar
Rouyer, T., Fromentin, J.-M., Ménard, F., Cazelles, B., Briand, K., Pianet, R., Planque, B. & Stenseth, N. C. (2008). Complex interplays among population dynamics, environmental forcing, and exploitation in fisheries. Proceedings of the National Academy Sciences 105, 54205425.CrossRefGoogle ScholarPubMed
Sarmiento, J. L., Slater, R., Barber, R., Bopp, L., Doney, S. C., Hirst, A. C., Kleypas, J., Matear, R., Mikolajewicz, U., Monfray, P., Soldatov, V., Spall, S. A. & Stouffer, R. (2004). Response of ocean ecosystems to climate warming. Global Biogeochemical Cycles 18, GB3003. doi:10.1029/2003GB002134.CrossRefGoogle Scholar
Schofield, O., Ducklow, H. W., Martinson, D. G., Meredith, M. P., Moline, M. A. M. & Fraser, W. R. (2010). How do polar marine ecosystems respond to rapid climate change? Science 328, 15201523.CrossRefGoogle ScholarPubMed
Stock, C. A., Alexander, M. A., Bond, N. A., Brander, K., Cheung, W. W. L., Curchitser, E. N., Delworth, T. L., Dunne, J. P., Griffies, S. M., Haltuch, M. A., Hare, J. A., Hollowed, A. B., Lehodey, P., Levin, S. A., Link, J. S., Rose, K. A., Rykaczewski, R. R., Sarmiento, J. L., Stouffer, R. J., Schwing, F. B., Vecchi, G. A. & Werner, F. E. (in press). On the use of IPCC-class models to assess the impact of climate on living marine resources. Progress in Oceanography. doi:10.1016/j.pocean.2010.09.001Google Scholar
Stram, D. L. & Evans, D. C. K. (2009). Fishery management responses to climate change in the North Pacific. ICES Journal of Marine Science 66, 16331639.CrossRefGoogle Scholar
Weston, K., Fernand, L., Nicholls, J., Marca-Bell, A., Mills, D., Sivyer, D. & Trimmer, M. (2008). Sedimentary and water column processes in the Oyster Grounds: a potentially hypoxic region of the North Sea. Marine Environmental Research 65, 235249.CrossRefGoogle Scholar
Williams, J. W. & Jackson, S. T. (2007). Novel climates, no-analog communities, and ecological surprises. Frontiers in Ecology and the Environment 5, 475482.CrossRefGoogle Scholar
World Bank (2009). The Costs to Developing Countries of Adapting to Climate Change: New Methods and Estimates. The Global Report of the Economics of Adapting to Climate Change Study, Consultation Draft. Washington, DC: World Bank.Google Scholar