Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-03T18:28:08.019Z Has data issue: false hasContentIssue false

Potential and realities of enhancing rapeseed- and grain legume-based protein production in a northern climate

Published online by Cambridge University Press:  19 April 2012

P. PELTONEN-SAINIO*
Affiliation:
MTT Agrifood Research Finland, Plant Production Research, FI-31600 Jokioinen, Finland
A. HANNUKKALA
Affiliation:
MTT Agrifood Research Finland, Plant Production Research, FI-31600 Jokioinen, Finland
E. HUUSELA-VEISTOLA
Affiliation:
MTT Agrifood Research Finland, Plant Production Research, FI-31600 Jokioinen, Finland
L. VOUTILA
Affiliation:
MTT Agrifood Research Finland, Animal Production Research, Tervamäentie 179, FI-05840 Hyvinkää, Finland
J. NIEMI
Affiliation:
MTT Agrifood Research Finland, Economics, Latokartanonkaari 9, FI-00790 Helsinki, Finland
J. VALAJA
Affiliation:
MTT Agrifood Research Finland, Animal Production Research, FI-31600 Jokioinen, Finland
L. JAUHIAINEN
Affiliation:
MTT Agrifood Research Finland, Plant Production Research, FI-31600 Jokioinen, Finland
K. HAKALA
Affiliation:
MTT Agrifood Research Finland, Plant Production Research, FI-31600 Jokioinen, Finland
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

Crop-based protein self-sufficiency in Finland is low. Cereals dominate the field cropping systems in areas that are also favourable for legumes and rapeseed. The present paper estimated the realistic potential for expanding protein crop production taking account of climatic conditions and constraints, crop rotation requirements, field sizes, soil types and likelihood for compacted soils in different regions. The potential for current expansion was estimated by considering climate change scenarios for 2025 and 2055. By using actual regional mean yields for the 2000s, without expecting any yield increase during the expansion period (due to higher risks of pests and diseases), potential production volumes were estimated. Since rapeseed, unlike grain legumes, is a not a true minor crop, its expansion potential is currently limited. Thus, most potential is from the introduction of legumes into cropping systems. The current 100000 ha of protein crops could be doubled, and areas under cultivation could reach 350000 and 390000 ha as a result of climate warming by 2025 and 2055, respectively. Such increases result mainly from the longer growing seasons projected for the northern cropping regions of Finland. Self-sufficiency in rapeseed could soon increase from 0·25 to 0·32, and then to 0·50 and 0·60 by 2025 and 2055, respectively. If legume production expands according to its potential, it could replace 0·50–0·60 of currently imported soybean meal, and by 2025 it could replace it completely. Replacement of soybean meal is suitable for ruminants, but it presents some problems for pig production, and is particularly challenging for poultry.

Type
Crops and Soils Review
Copyright
Copyright © Cambridge University Press 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altieri, M. A. (1999). The ecological role of biodiversity in agroecosystems. Agriculture, Ecosystems and Environment 74, 1931.CrossRefGoogle Scholar
Altieri, M. A. & Letourneau, D. K. (1982). Vegetational management and biological control in agroecosystems. Crop Protection 1, 405430.CrossRefGoogle Scholar
Arrow, K. J. (1965). Aspects of the Theory of Risk-Bearing. Helsinski: Yrjo Jahnsson Säätio.Google Scholar
Bass, D. & Cavalier-Smith, T. (2009). Cercozoa. In The Tree of Life Web Project Version 22 March 2009. Tuscon, AZ: Tree of Life Web Project. Available online at: http://tolweb.org/Cercozoa/121187/2009.03.22 (verified 14 March 2012).Google Scholar
Beckie, H. J., Johnson, E. N., Blackshaw, R. E. & Gan, Y. (2008). Productivity and quality of canola and mustard cultivars under weed competition. Canadian Journal of Plant Science 88, 367372.CrossRefGoogle Scholar
Bullied, W. J., Van Acker, R. C., Marginet, A. M. & Kenkel, N. C. (2006). Agronomic and environmental factors influence weed composition and canola competitiveness in southern Manitoba. Canadian Journal of Plant Science 86, 591599.CrossRefGoogle Scholar
Bulson, H. A. J., Snaydon, R. W. & Stopes, C. E. (1997). Effects of plant density on intercropped wheat and field beans in an organic farming system. Journal of Agricultural Science, Cambridge 128, 5971.CrossRefGoogle Scholar
Buron, G. & Gatel, F. (1992). Utilisation de la féverole (Vicia faba) par la truie en reproduction. Journées de la Recherche Porcine en France 24, 187194.Google Scholar
Coaker, T. H. (1987). Cultural methods: the crop. In Integrated Pest Management (Eds Burn, A. J., Coaker, T. H. & Jepson, P. C.), pp. 6988. London: Academic Press.Google Scholar
Colhoun, J. (1958). Club Root Disease of Brassicas Caused by Plasmodiophora brassicae Woron. Phytopathological Paper No. 3. London: Commonwealth Mycological Institute.Google Scholar
Corre-Hellou, G., Dibet, A., Hauggaard-Nielsen, H., Crozat, Y., Gooding, M., Ambus, P., Dahlmann, C., Von Fragstein, P., Pristeri, A., Monti, M. & Jensen, E. S. (2011). The competitive ability of pea–barley intercrops against weeds and the interactions with crop productivity and soil N availability. Field Crops Research 122, 264272.CrossRefGoogle Scholar
Crépon, K., Marget, P., Peyronnet, C., Carrouée, B., Arese, P. & Duc, G. (2010). Nutritional value of faba bean (Vicia faba L.) seeds for feed and food. Field Crops Research 115, 329339.CrossRefGoogle Scholar
Davidson, J. A. & Ramsey, M. D. (2000). Pea yield decline syndrome in South Australia: the role of diseases and the impact of agronomic practices. Australian Journal of Agricultural Research 51, 347354.CrossRefGoogle Scholar
Dixon, G. R. (2009). The occurrence and economic impact of Plasmodiophora brassicae and clubroot disease. Journal of Plant Growth Regulation 28, 194202.CrossRefGoogle Scholar
Donald, C. & Porter, I. (2009). Integrated control of clubroot. Journal of Plant Growth Regulation 28, 289303.CrossRefGoogle Scholar
Engqvist, L. G. & Ahvenniemi, P. (1997). Interactions between common root rot (Aphanomyces euteiches) and peas (Pisum sativum) in Finland. Acta Agriculutrae Scandinavica Section B: Soil and Plant Science 47, 242247.Google Scholar
Etienne, M. (1977). Possibilites d'introduction de la feverole dans le régime des truies en gestation. Journées de la Recherche Porcine en France 9, 199203.Google Scholar
Etienne, M., Duee, P. H. & Pastuszewska, B. (1975). Nitrogen balance in lactating sows fed on diets containing soybean oil meal or horsebean (Vicia faba) as a protein concentrate. Livestock Production Science 2, 147156.CrossRefGoogle Scholar
Evira, Finnish Food Safety Authority (2012 a). Certified/Approved Amount of Seed of Each Variety, 1 July 2009–30 June 2010: Seed by Category (In Finnish). Helsinki, Finland: Evira. Available online at http://www.evira.fi/files/attachments/fi/kasvit/siemenet/viral_ser_kg_09_10.pdf (verified 20 March 2012).Google Scholar
Evira, Finnish Food Safety Authority (2012 b). Sowing Seed Import (In Finnish). Helsinki, Finland: Evira. Available online at: http://www.evira.fi/files/attachments-archived/kasvintuotanto_ja_rehut/siemenet/siemen_tilastot/tuonti_1_7_2008_30_6_2009.pdf (verified 20 March 2012).Google Scholar
FAO (2012). FAOSTAT. Rome: FAO. Available online at http://faostat.fao.org/default.aspx (verified 20 March 2012).Google Scholar
FAPRI (2011). FAPRI-ISU 2011 World Agricultural Outlook Database. Ames, IA: Food & Agricultural Research Policy Institute. Available online at http://www.fapri.iastate.edu/outlook/2011/ (verified 14 March 2012).Google Scholar
Fernandez-Aparicio, M., Shtaya, M. J. Y., Emeran, A. A., Allagui, M. B., Kharrat, M. & Rubiales, D. (2011). Effects of crop mixtures on chocolate spot development on faba bean grown in Mediterranean climates. Crop Protection 30, 10151023.CrossRefGoogle Scholar
Finch, S. & Collier, R. H. (2000). Host–plant selection by insects – a theory based on ‘appropriate/ inappropriate landings’ by pest insects of cruciferous plants. Entomologia Experimentalis et Applicata 96, 91102.CrossRefGoogle Scholar
Gan, Y., Liang, C., Wang, X. & McConkey, B. (2011). Lowering carbon footprint of durum wheat by diversifying cropping systems. Field Crops Research 122, 199206.CrossRefGoogle Scholar
Gatel, F., Grosjean, F. & Leuillet, M. (1988). Utilization of white-flowered smooth-seeded spring peas (Pisum sativum hortense, CV Amino) by the breeding sow. Animal Feed Science and Technology 22, 91104.CrossRefGoogle Scholar
Gatel, F., Grosjean, F. & Castaing, J. (1989 a). Utilisation par le porc charcutier de regimes a teneur elevee en pois de printemps (plus de 40 p. cent). Journées de la Recherche Porcine en France 21, 6974.Google Scholar
Gatel, F., Fekete, J. & Grosjean, F. (1989 b). Introduction de 30% de pois de printemps dans des regimes pour porcelets sevres: influence del al teneur en acides amines soufres des regimes. Journées de la Recherche Porcine en France 21, 8388.Google Scholar
Gaulin, E., Jacquet, C., Bottin, A. & Dumas, B. (2007). Root rot disease of legumes caused by Aphanomyces euteiches. Molecular Plant Pathology 8, 539548.CrossRefGoogle ScholarPubMed
Grosjean, F., Bastianelli, D., Bourdillon, A., Cerneau, P., Jondreville, C. & Peyronnet, C. (1998). Feeding value of pea (Pisum sativum L.). 2. Nutritional value in the pig. Animal Science 67, 621625.CrossRefGoogle Scholar
Hakala, K., Hannukkala, A. O., Huusela-Veistola, E., Jalli, M. & Peltonen-Sainio, P. (2011). Pests and diseases in a changing climate: a major challenge for Finnish crop production. Agricultural and Food Science 20, 314.CrossRefGoogle Scholar
Hannukkala, A. (1988). Diseases of rapeseed in Finland. GCIRC Bulletin 4, 2325.Google Scholar
Harker, K. N. (2001). Survey on yield losses due to weeds in central Alberta. Canadian Journal of Plant Science 81, 339342.CrossRefGoogle Scholar
Härmälä, E. (2010). Viljapohjaisen Etanolin Tuotanto Suomessa (In Finnish). PTT Working Papers 121. Helsinki, Finland: Pellervo Economic Research PTT.Google Scholar
Hauggaard-Nielsen, H. & Jensen, E. S. (2001). Evaluating pea and barley cultivars for complementarity in intercropping at different levels of soil N availability. Field Crops Research 72, 185196.CrossRefGoogle Scholar
Hauggaard-Nielsen, H., Ambus, P. & Jensen, E. S. (2001). Interspecific competition, N use and interference with weeds in pea-barley intercropping. Field Crops Research 70, 101109.CrossRefGoogle Scholar
Hauggaard-Nielsen, H., Andersen, M. K., Jørnsgaard, B. & Jensen, E. S. (2006). Density and relative frequency effects on competitive interactions and resource use in pea–barley intercrops. Field Crops Research 95, 256267.CrossRefGoogle Scholar
Hauggaard-Nielsen, H., Jønsgård, B., Kinane, J. & Jensen, E. S. (2008). Grain legume–cereal intercropping: the practical application of diversity, competition and facilitation in arable and organic cropping systems. Renewable Agriculture and Food Systems 23, 312.CrossRefGoogle Scholar
Hauggaard-Nielsen, H., Gooding, M., Ambus, P., Corre-Hellou, G., Crozat, Y., Dahlmann, C., Dibet, A., Von Fragstein, P., Pristeri, A., Monti, M. & Jensen, E. S. (2009). Pea–barley intercropping for efficient symbiotic N2-fixation, soil N acquisition and use of other nutrients in European organic cropping systems. Field Crops Research 113, 6471.CrossRefGoogle Scholar
Howard, R. J., Strelkov, S. E. & Harding, M. W. (2010). Clubroot of cruciferous crops – new perspectives on an old disease. Canadian Journal of Plant Pathology 32, 4357.CrossRefGoogle Scholar
Humpherson-Jones, F. M. (1989). Survival of Alternaria brassicae and Alternaria brassicicla on crop debris of oilseed rape and cabbage. Annals of Applied Biology 115, 4550.CrossRefGoogle Scholar
Huusela-Veistola, E. & Jauhiainen, L. (2006). Expansion of pea cropping increases the risk of pea moth (Cydia nigricana; Lep., Tortricidae) infestation. Journal of Applied Entomology 130, 142149.CrossRefGoogle Scholar
Huuskonen, A., Khalili, H. & Joki-Tokola, E. (2007). Effects of three different concentrate proportions and rapeseed meal supplement to grass silage on animal performance of dairy-breed bulls with TMR feeding. Livestock Science 110, 154165.CrossRefGoogle Scholar
Hwang, S.-F., Howard, R. J. & Chang, K.-F. (1996). Forage and oilseed legume diseases incited by Rhizoctonia species. In Rhizoctonia Species: Taxonomy, Molecular Biology, Ecology, Pathology and Disease Control (Eds. Sneh, B., Jabaji-Hare, S., Neate, S. & Dijst, G.), pp. 289301. Dordrecht, The Netherlands: Kluwer Academic Publishers.Google Scholar
Jezierny, D., Mosenthin, R. & Bauer, E. (2010). The use of grain legumes as a protein source in pig nutrition: A review. Animal Feed Science and Technology 157, 111128.CrossRefGoogle Scholar
Juntti, L., Pihamaa, P. & Heikkilä, A.-M. (2005). Domestic Protein from Pea – Are there Economic Preconditions for Increasing Cultivation? MTT: n selvityksiä, 93 (In Finnish with English abstract). Helsinki, Finland: MTT.Google Scholar
Jylhä, K., Fronzek, S., Tuomenvirta, H., Carter, T. R. & Ruosteenoja, K. (2008). Changes in frost, snow and Baltic Sea ice by the end of the twenty-first century based on climate model projections for Europe. Climatic Change 86, 441462.CrossRefGoogle Scholar
Karling, J. S. (1968). The Plasmodiophorales, 2nd edn. New York: Hafner Publishing.Google Scholar
Kirkegaard, J. A., Simpfendorfer, S., Holland, J., Bambach, R., Moore, K. J. & Rebetzke, G. J. (2004). Effect of previous crop on crown rot and yield of durum and bread wheat in northern NSW. Australian Journal of Agricultural Research 55, 321334.CrossRefGoogle Scholar
Koivunen, E., Valaja, J., Tuunainen, P. & Valkonen, E. (2011). Raw or processed faba beans (Vicia faba L.) in the diets of laying hens (poster presentation). In Proceedings of the 18th European Symposium on Poultry Nutrition, 31 October–4 November 2011, Izmir, Turkey (Eds Ceylan, N., Ciftci, I. & Adabi, S. G.), p. 094. Ankara, Turkey: ESPN.Google Scholar
Kontturi, M., Laine, A., Niskanen, M., Hurme, T., Hyövelä, M. & Peltonen-Sainio, P. (2011). Pea-oat intercrops to sustain lodging resistance and yield formation in northern European conditions. Acta Agriculturae Scandinavica Section B: Soil and Plant Science 61, 612621.Google Scholar
Köpke, U. & Nemecek, T. (2010). Ecological services of faba bean. Field Crops Research 115, 217233.CrossRefGoogle Scholar
Koundouri, P., Laukkanen, M., Myyrä, S. & Nauges, C. (2009). The effects of EU agricultural policy changes on farmers’ risk attitudes. European Review of Agricultural Economics 36, 5377.CrossRefGoogle Scholar
Krupinsky, J. M., Bailey, K. L., McMullen, M. P., Gossen, B. D. & Turkington, T. K. (2002). Managing plant disease risk in diversified cropping systems. Agronomy Journal 94, 198209.CrossRefGoogle Scholar
Lemerle, D., Verbeek, B. & Diffey, S. (2006). Influences of field pea (Pisum sativum) density on grain yield and competitiveness with annual ryegrass (Lolium rigidum) in south-eastern Australia. Australian Journal of Experimental Agriculture 46, 14651472.CrossRefGoogle Scholar
Levenfors, J. P., Wikström, M., Persson, L. & Gerhardson, B. (2003). Pathogenicity of Aphanomyces spp. from different crops in Sweden. European Journal of Plant Pathology 109, 535543.CrossRefGoogle Scholar
Lilja, H., Uusitalo, R., Yli-Halla, M., Nevalainen, R., Väänänen, T. & Tamminen, P. (2009). Suomen Maannostietokanta. MTT TIEDE 6 (In Finnish, abstract in English). Helsinki, Finland: MTT.Google Scholar
Linnasalmi, A. & Toiviainen, A. (1991). Occurrence of clubroot and Plasmodiophora brassicae Wor. races in Finland. Journal of Agricultural Science in Finland 63, 415434.Google Scholar
MAF (2006). MMM-RMO E2.1. Unit Costs of Buildings and Facilities (in Finnish). Helsinki, Finland: Ministry of Agriculture and Forestry. Available online at: http://www.finlex.fi/data/normit/25697-06040fil.pdf (verified 15 March 2012).Google Scholar
Mukula, J. & Rantanen, O. (1987). Climatic risks to the yield and quality of field crops in Finland. I. Basic facts about Finnish field crops production. Annales Agriculturae Fennica 26, 118.Google Scholar
Myyrä, S. & Pietola, K. (2002). Economic importance of parcel structure on Finnish farms. Agricultural and Food Science in Finland 11, 163173.CrossRefGoogle Scholar
Naseri, B., Davidson, J. A. & Scott, E. S. (2008). Survival of Leptosphaeria maculans and associated mycobiota on oilseed rape stubble buried in soil. Plant Pathology 57, 280289.CrossRefGoogle Scholar
Niemi, J. K. (2006). A dynamic programming model for optimising feeding and slaughter decisions regarding fattening pigs. Agricultural and Food Science 15(Supp. 1), 1121.CrossRefGoogle Scholar
Niemi, J. K., Sevon-Aimonen, M. L., Pietola, K. & Stalder, K. J. (2010). The value of precision feeding technologies for grow-finish swine. Livestock Science 129, 1323.CrossRefGoogle Scholar
OECD-FAO (2011). OECD-FAO Agricultural Outlook 2011–2020. Paris, France: OECD.Google Scholar
Oyarzun, P., Gerlagh, M. & Hoogland, A. E. (1993). Relation between cropping frequency of peas and other legumes and foot and root rot in peas. Netherlands Journal of Plant Pathology 99, 3544.CrossRefGoogle Scholar
Parry, M. L., Canziani, O. F., Palutikof, J. P., van der Linden, P. J. & Hanson, C. E. (2007). Climate Change 2007. Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press.Google Scholar
Partanen, K., Valaja, J., Jalava, T. & Siljander-Rasi, H. (2001). Composition, ileal amino acid digestibility and nutritive value of organically grown legume seeds and conventional rapeseed cakes for pigs. Agricultural and Food Science in Finland 10, 309322.CrossRefGoogle Scholar
Partanen, K., Alaviuhkola, T., Siljander-Rasi, H. & Suomi, K. (2003). Faba beans in diets for growing-finishing pigs. Agricultural and Food Science in Finland 12, 3547.CrossRefGoogle Scholar
Partanen, K., Siljander-Rasi, H. & Alaviuhkola, T. (2006). Feeding weaned piglets and growing-finishing pigs with diets based on mainly home-grown organic feedstuffs. Agricultural and Food Science 15, 89105.CrossRefGoogle Scholar
Patriquin, D. G., Baines, D., Lewis, J. & Macdougall, A. (1988). Aphid infestation of fababeans on an organic farm in relation to weeds, intercrops and added nitrogen. Agriculture, Ecosystems and Environment 20, 279288.CrossRefGoogle Scholar
Peltonen-Sainio, P., Jauhiainen, L. & Hannukkala, A. (2007). Declining rapeseed yields in Finland: how, why and what next? Journal of Agricultural Science, Cambridge 145, 587598.CrossRefGoogle Scholar
Peltonen-Sainio, P., Jauhiainen, L., Hakala, K. & Ojanen, H. (2009 a). Climate change and prolongation of growing season: changes in regional potential for field crop production in Finland. Agricultural and Food Science 18, 171190.CrossRefGoogle Scholar
Peltonen-Sainio, P., Hakala, K., Jauhiainen, L. & Ruosteenoja, K. (2009 b). Comparing regional risks in producing turnip rape and oilseed rape - Impacts of climate change and breeding. Acta Agriculturae Scandinavica Section B: Soil and Plant Science 59, 129138.Google Scholar
Peltonen-Sainio, P., Jauhiainen, L. & Laurila, I. P. (2009 c). Cereal yield trends in northern European conditions: Changes in yield potential and its realisation. Field Crops Research 110, 8590.CrossRefGoogle Scholar
Peltonen-Sainio, P., Jauhiainen, L., Hyövelä, M. & Nissilä, E. (2011 a). Trade-off between oil and protein in rapeseed at high latitudes: means to consolidate protein crop status? Field Crops Research 121, 248255.CrossRefGoogle Scholar
Peltonen-Sainio, P., Jauhiainen, L., Laitinen, P., Salopelto, J., Saastamoinen, M. & Hannukkala, A. (2011 b). Identifying difficulties in rapeseed root penetration in farmers’ fields in northern European conditions. Soil Use and Management 27, 229237.CrossRefGoogle Scholar
Peltonen-Sainio, P., Jauhiainen, L. & Hakala, K. (2011 c). Crop responses to temperature and precipitation according to long-term multi-location trials at high-latitude conditions. Journal of Agricultural Science, Cambridge 149, 4962.CrossRefGoogle Scholar
Peltonen-Sainio, P., Jauhiainen, L. & Nissilä, E. (2012). Improving cereal protein yields for high latitude conditions. European Journal of Agronomy 39, 18.CrossRefGoogle Scholar
Persson, L., Bødker, L. & Larsson-Wikström, M. (1997). Prevalence and pathogenicity of root rot pathogens of pea in Southern Scandinavia. Plant Disease 81, 171174.CrossRefGoogle ScholarPubMed
Perttilä, S., Valaja, J., Partanen, K., Jalava, T. & Venäläinen, E. (2002). Apparent ileal digestibility of amino acids in protein feedstuffs and diet formulation based on total v. digestible lysine for poultry. Animal Feed Science and Technology 98, 203218.CrossRefGoogle Scholar
Pratt, J. W. (1964). Risk aversion in the small and in the large. Econometrica 32, 122136.CrossRefGoogle Scholar
Rastas, M., Hannukkala, A. & Latvala, S. (forthcoming). Occurrence of Plasmodiophora brassicae in Finnish turnip rape and oilseed rape fields. Agricultural and Food Science.Google Scholar
Salonen, J., Hyvönen, T. & Jalli, H. (2005). Weed flora and weed management of field peas in Finland. Agricultural and Food Science 14, 189201.CrossRefGoogle Scholar
Schoeny, A., Jumel, S., Rouault, F., Lemarchand, E. & Tivoli, B. (2010). Effect and underlying mechanisms of pea–cereal intercropping on the epidemic development of ascochyta blight. European Journal of Plant Pathology 126, 317331.CrossRefGoogle Scholar
Sexson, D. L. & Wyman, J. A. (2005). Effect of crop rotation distance in populations of Colorado potato beetle (Coleoptera: Chrysomelidae): Development of areawide Colorado potato beetle pest management strategies. Journal of Economic Entomology 98, 716724.CrossRefGoogle ScholarPubMed
Shingfield, K. J., Vanhatalo, A. & Huhtanen, P. (2003). Comparison of heat-treated rapeseed expeller and solvent-extracted soya-bean meal as protein supplements for dairy cows given grass silage-based diets. Animal Science 77, 305317.CrossRefGoogle Scholar
Smith, B. J., Kirkegaard, J. A. & Howe, G. N. (2004). Impact of Brassica break-crops on soil biology and yield of following wheat crops. Australian Journal of Agricultural Research 55, 111.CrossRefGoogle Scholar
Stoddard, F. L., Hovinen, S., Kontturi, M., Lindström, K. & Nykänen, A. (2009). Legumes in Finnish Agriculture: history, present status and future prospects. Agricultural and Food Science 18, 191205.CrossRefGoogle Scholar
Szabó, C., Jansman, A. J., Babinszky, L., Kanis, E. & Verstegen, M. W. (2001). Effect of dietary protein source and lysine:DE ratio on growth performance, meat quality, and body composition of growing–finishing pigs. Journal of Animal Science 79, 28572865.CrossRefGoogle ScholarPubMed
Szumigalski, A. & Van Acker, R. (2005). Weed suppression and crop production in annual intercrops. Weed Science 53, 813825.CrossRefGoogle Scholar
Tike: Information Centre for Ministry of Agriculture and Forestry (2012). Yearbook of Farm Statistics 2010. Helsinki, Finland: Tike. Available online at: http://www.maataloustilastot.fi/sites/default/files/vuosikirja2010_nettiin.pdf (verified 20 March 2012).Google Scholar
Tosti, G. & Guiducci, M. (2010). Durum wheat–faba bean temporary intercropping: effects on nitrogen supply and wheat quality. European Journal of Agronomy 33, 157165.CrossRefGoogle Scholar
Trenbath, B. R. (1993). Intercropping for the management of pests and diseases. Field Crops Research 34, 381405.CrossRefGoogle Scholar
Trnka, M., Olesen, J. E., Kersebaum, K. C., Skjelvåg, A. O., Eitzinger, J., Seguin, B., Peltonen-Sainio, P., Rötter, R., Iglesias, A., Orlandini, S., Dubrovský, M., Hlavinka, P., Balek, J., Eckersten, H., Cloppet, E., Calanca, P., Gobin, A., Vucetic, V., Nejedlik, P., Kumar, S., Lalic, B., Mestre, A., Rossi, F., Kozyra, J., Alexandrov, V., Semerádová, D. & Zalud, Z. (2011). Agroclimatic conditions in Europe under climate change. Global Change Biology 17, 22982318.CrossRefGoogle Scholar
USDA (2011). USDA Agricultural Projections to 2020. Long-term Projections Report OCE–2011–1. Washington, DC: United States Department of Agriculture.Google Scholar
Valencia, D. G., Serrano, M. P., Centeno, C., Lázaro, R. & Mateos, G. G. (2008). Pea protein as a substitute of soya bean protein in diets for young pigs: Effects on productivity and digestive traits. Livestock Science 118, 110.CrossRefGoogle Scholar
Valkonen, E. (2005). Herneestä valkuaista kanoille. Suomen Siipikarja 4, 2829. (In Finnish).Google Scholar
Vanhatalo, A., Ahvenjärvi, S. & Jaakkola, S. (2004). Metabolic and production responses in dairy cows fed peas or rapeseed meal on grass silage based diet. Journal of Animal and Feed Sciences 13, 231234.CrossRefGoogle Scholar
Venäläinen, E. (2005). Herneestä valkuaista broilereille. Suomen Siipikarja 4, 48. (In Finnish).Google Scholar
Verma, P. R. (1996). Oilseed rape and canola diseases incited by Rhizoctonia species. In Rhizoctonia Species: Taxonomy, Molecular Biology, Ecology, Pathology and Disease Control (Eds. Sneh, B., Jabaji-Hare, S., Neate, S. & Dijst, G.), pp. 249258. Dordrecht, the Netherlands: Kluwer Academic Publishers.Google Scholar
Wahmhoff, W., Hedke, K., Von Tiedemann, A., Nitzsche, O. & Ulber, B. (1999). Impact of crop rotation and soil cultivation on the development of pests and diseases of rapeseed. Zeitschrift für Pflanzenkrankheiten and Pflanzenschutz 106, 5773.Google Scholar
Wallenhammar, A.-C. (1996). Prevalence of Plasmodiophora brassicae in a spring oilseed rape growing area in central Sweden and factors influencing soil infestation levels. Plant Pathology 45, 710719.CrossRefGoogle Scholar
Willets, H. J. & Wong, J. A.-L. (1980). The biology of Sclerotinia sclerotiorum, S. trifoliorum, and S. minor with emphasis on specific nomenclature. The Botanical Review 46, 101165.CrossRefGoogle Scholar
Zegada-Lizarazu, W. & Monti, A. (2011). Energy crops in rotation. A review. Biomass and Bioenergy 35, 1225.CrossRefGoogle Scholar