Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-08T08:01:19.372Z Has data issue: false hasContentIssue false

The potency of balancing interactions between dietary proteins. Chick experiments on the significance for prior judgement and use of herring proteins

Published online by Cambridge University Press:  27 March 2009

B. Laksesvela
Affiliation:
Herring and Oil Meal Industry Research (S.S.F.), Straumsgrend, Norway

Extract

1. The potency of balancing interactions between the protein of herring press-cake (dried) and solubles (condensed) on one side, and certain vegetable feeds on the other, has been examined on 2- to 4-week-old chicks:

(a) Initially by comparing the co-effect of a series of different combinations of the herring products when ingested together with certain cereals plus extracted ground-nut meal, to that estimated earlier when the same combinations of herring products formed the sole dietary protein.

(b) Thereafter by studying whether the co-effect of the herring products was influenced or not by substituting extracted soya-bean meal for the ground-nut meal.

(c) Further by tentative trials to show that registered interactions were caused by some keystone amino acids.

2. A special dietary system was devised for the purpose (a basal diet of actual feeds + a synthetic, practically protein-free basal diet + the tested feed, eventually + adjustments), the results being recorded as combinative protein value = c.p.v.

3. Interactions between dietary constituents not only were shown under the circumstances, but proved to be an easily acting factor of great power. Herring solubles in proportions of 15–45% were formerly found to bring about a statistically significant improvement of the meal when fed together with this as the only protein of the diet. But: (a) the introduction of certain cereals and ground-nut readily converted the beneficial effect of the solubles into a significantly negative one. (b) Whereas soya-beans instead of ground-nut evidently reversed the situation again. In this third grouping solubles at moderate levels appeared neutral, meaning that herring solubles combined significantly better with soya-bean than with ground-nut when fed to young chicks in presence of a set of cereals and herring meal, (c) Responses to supplemental, crystalline amino acids showed that the interactions between the protein sources could be attributed to their constituent amino acids. Thus the little efficient combination of solubles and ground-nut plus certain cereals could be greatly improved by small quantities of all ten essential amino acids together, and equally much by lysine plus threonine only. Contrarily, the diet appeared weakened when lysine, threonine or isoloucine were omitted singly or together from the whole ten. The same was the case with single addition of leucine.

4. The discussion stresses the pre-eminent importance of the diet in biological estimations of protein value. It also points out the practical significance of skilful combination of different protein sources.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1960

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, J. O. & Dobson, D. C. (1959). Poult. Sci. 38, 1140.CrossRefGoogle Scholar
Barnes, R. H., Maach, J. E., Knights, M. J. & Burr, G. O. (1945). Cereal Ckem. 22, 273.Google Scholar
Beadles, J. R., Quisenberry, J. H., Nakakuka, F. I. & Mitchell, H. H. (1933). J. Agric. Res. 47, 947.Google Scholar
Bell, J. M. & Loosli, J. K. (1951). J. Anim. Sci. 10, 50.CrossRefGoogle Scholar
Bender, A. E. (1958). Proc. Nutr. Soc. 17, 85.CrossRefGoogle Scholar
Bender, A. E. & Doell, B. H. (1957). Brit. J. Nutr. 11, 140.CrossRefGoogle Scholar
Block, R. J. & Mitchell, H. H. (1946). Nutr. Abstr. Rev. 16, 249.Google Scholar
Booe, G. (1960). J. Sci. Fd Agric. 11, 362.Google Scholar
Carpenter, K. J. (1951). Brit. J. Nutr. 5, 243.CrossRefGoogle Scholar
Carpenter, K. J. (1957). Agric. Progr. 32, 1.Google Scholar
Carpenter, K. J. (1958). Proc. Nutr. Soc. 17, 91.CrossRefGoogle Scholar
Carpenter, K. J. & Clego, K. M. (1957). Brit. J. Nutr. 11, 358.CrossRefGoogle Scholar
Carpenter, K. J., Ellinger, G. M., Munro, M. I. & Rolfe, E. J. (1957). Brit. J. Nutr. 11, 162.CrossRefGoogle Scholar
Desphande, P. D., Harper, A. E., Quiros-Perez, F. & Elvehjem, C. A. (1955). J. Nutr. 57, 415.Google Scholar
Desphande, P. D., Harper, A. E. & Elvehjem, C. A. (1958). J. Biol. Chem. 230, 327.Google Scholar
Fell, R. V. (1959). Feedstuffs, 31, 35, 10.Google Scholar
Fisher, H., Griminger, P., Leveille, G. F. & Shapiro, R. (1960). J. Nutr. 71, 213.CrossRefGoogle Scholar
Fisher, H., Salander, R. C. & Taylor, M. W. (1956). J. Nutr. 58, 459.CrossRefGoogle Scholar
Goyco, J. A. (1959). J. Nutr. 69, 49.CrossRefGoogle Scholar
Griminger, P., Scott, H. M. & Forbes, R. M. (1956). J. Nutr. 59, 67.CrossRefGoogle Scholar
Hamilton, T. S. (1939). J. Nutr. 17, 565.CrossRefGoogle Scholar
Harper, A. E. (1959). J. Nutr. 67, 109.CrossRefGoogle Scholar
Harris, R. S. & Burres, D. A. (1959). J. Nutr. 67, 549.CrossRefGoogle Scholar
Heiman, V., Carver, J. S. & Cook, J. W. (1939). Poult. Sci. 18, 464.CrossRefGoogle Scholar
Henry, K. M. & Kon, S. K. (1957). Brit. J. Nutr. 11, 305.CrossRefGoogle Scholar
Holemans, K. & Lambrechts, A. (1955). J.Nutr. 56, 477.CrossRefGoogle Scholar
Laksesvela, B. (1958). J. Agric. Sci. 51, 164.CrossRefGoogle Scholar
Laksesvela, B. (1959). Arch. Geflügelk. 23, 88.Google Scholar
Lang, K. (1957). Addendum to Abstracts of Papers, 4th Int. Congr. Nutr., Paris.Google Scholar
March, B. E., Stupic, D. & Biely, F. (1949). Poult. Sci. 28, 713.CrossRefGoogle Scholar
Miller, D. S. & Bender, A. E. (1955). Brit. J. Nutr. 9, 382.CrossRefGoogle Scholar
Mitchell, H. H. (19231924 a). J. Biol. Chem. 58, 873.CrossRefGoogle Scholar
Mitchell, H. H. (19231924 b). J. Biol. Chem. 58, 905.CrossRefGoogle Scholar
Mitchell, H. H. (1954). Wiss. Abh. dtsch. Akad. Land-wirtswissenschaften, Bd. V/2, 279.Google Scholar
Mitchell, H. H. & Carman, G. G. (1926). Amer. Physiol. 76, 398.CrossRefGoogle Scholar
Munaver, S. M. & Harper, A. E. (1959). J. Nutr. 69, 58.CrossRefGoogle Scholar
Møllgaard, H. (1955). p. 282. Beretning fra forsogs-laboratoriet.Google Scholar
NRC (1953). Nutrient Requirements for Swine. Washington, U.S.A.Google Scholar
NRC (1954). Nutrient Requirements for Poultry. Washington, U.S.A.Google Scholar
Orton, A. U., Gimbel, N. S. & Smith, A. H. (1956). Fed. Proc. 15, 567.Google Scholar
Osborne, T. B. & Mendel, L. B. (1917). J. Biol. Chem. 32, 369.CrossRefGoogle Scholar
Ousterhout, L. E., Grau, C. R. & Lundholm, B. D. (1959). J. Nutr. 69, 65.CrossRefGoogle Scholar
Rippon, W. P. (1959). Brit. J. Nutr. 13, 243.CrossRefGoogle Scholar
Rosenberg, H. R., Colic, R. & Eckert, R. E. (1959). J. Nutr. 69, 217.CrossRefGoogle Scholar
Sauberlich, H. E. (1956). J. Nutr. 59, 353.CrossRefGoogle Scholar
Schrimshaw, N. S., Bressani, R., Behar, M. & Viteri, F. (1958). J. Nutr. 66, 485.CrossRefGoogle Scholar
Schrimshaw, N. S. (1959). J. Amer. Diet. Ass. 35, 441.CrossRefGoogle Scholar
Thomas, K. (1909). Arch. Anat. Physiol., Lpz. (Physiol. Abt.), p. 219.Google Scholar
Venkatchalam, P. S., Scricantia, S. G., Mehta, G. & Gopalan, C. (1956). Indian J. Med. Res. 44, 389.Google Scholar