Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T23:40:53.982Z Has data issue: false hasContentIssue false

Pollen–pistil interaction, pistil histology and seed production in A×B grain sorghum crosses under chilling field temperatures

Published online by Cambridge University Press:  13 November 2009

M. E. CISNEROS-LÓPEZ
Affiliation:
INIFAP-Campo Experimental Río Bravo, Km 61 Carretera Reynosa-Matamoros, Apdo. Postal 172, 88900, Río Bravo Tamaulipas, México
L. E. MENDOZA-ONOFRE*
Affiliation:
Departments of Seed Production, Botany, Genetics, and Phytopathology, Colegio de Posgraduados, Campus Montecillo, Km. 36·5 Carretera México-Texcoco, 56230, Montecillo, México
H. A. ZAVALETA-MANCERA
Affiliation:
Departments of Seed Production, Botany, Genetics, and Phytopathology, Colegio de Posgraduados, Campus Montecillo, Km. 36·5 Carretera México-Texcoco, 56230, Montecillo, México
V. A. GONZÁLEZ-HERNÁNDEZ
Affiliation:
Departments of Seed Production, Botany, Genetics, and Phytopathology, Colegio de Posgraduados, Campus Montecillo, Km. 36·5 Carretera México-Texcoco, 56230, Montecillo, México
G. MORA-AGUILERA
Affiliation:
Departments of Seed Production, Botany, Genetics, and Phytopathology, Colegio de Posgraduados, Campus Montecillo, Km. 36·5 Carretera México-Texcoco, 56230, Montecillo, México
L. CÓRDOVA-TÉLLEZ
Affiliation:
Departments of Seed Production, Botany, Genetics, and Phytopathology, Colegio de Posgraduados, Campus Montecillo, Km. 36·5 Carretera México-Texcoco, 56230, Montecillo, México
M. HERNÁNDEZ-MARTÍNEZ
Affiliation:
INIFAP-Campo Experimental Bajío, Km. 65 Carretera Celaya-San Miguel Allende, Apdo. Postal 112, 38810, Celaya, Guanajuato, México
*
*To whom all correspondence should be addressed. E-mail: [email protected]

Summary

Six pairs of isogenic lines of sorghum (Sorghum bicolor L. Moench) were sown in field plots in Montecillo, State of México (2240 m altitude), in 2005 and 2006. Crosses A (♀)×B (♂) were done in each pair. In A-lines, the length of pistil, stigma, style and ovary, as well as the ovary width, were measured. In B-lines, pollen diameter, viability (cytoplasm density) and production were evaluated. Pollen germination and pollen tube growth in the pistils of the A-lines, were quantified in vivo with aniline blue and epifluorescence 18 h after pollination (HAP), while fertilized pistils were counted at 96 HAP. Histological studies on both pollinated and non-pollinated pistils were performed in one male-sterile line. Seed yield, mean-seed weight, seeds per panicle and seed set (SS; seeds/flower/panicle) were determined at harvest. Pollen viability was the variable most related to pollen germination and pollen tube growth. Stigma receptivity was not associated with its morphology. Growth of the pollen tube in stigma, style and ovary was observed in the transmitting tissue 18 HAP, running parallel to the vascular tissue. Yield under chilling field temperatures (minimum average of 6 and 8°C) prevailing during flower development and pollination ranged from 7 to 12 g/panicle. The differences in seed production and SS among A×B crosses did not depend on the amount and viability of pollen.

Type
Crops and Soils
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bassetti, P. & Westgate, M. E. (1993 a). Senescence and receptivity of maize silks. Crop Science 33, 275278.CrossRefGoogle Scholar
Bassetti, P. & Westgate, M. E. (1993 b). Water deficit affects receptivity of maize silks. Crop Science 33, 279282.CrossRefGoogle Scholar
Brooking, I. R. (1976). Male sterility in Sorghum bicolor (L.) Moench induced by low night temperature. I. Timing of the stage of sensitivity. Australian Journal of Plant Physiology 3, 589596.Google Scholar
Cheung, A. Y. (1995). Pollen–pistil interactions in compatible pollination. Proceedings of the National Academy of Sciences USA 92, 30773080.CrossRefGoogle ScholarPubMed
Cisneros-López, M. E., Mendoza-Onofre, L. E., Zavaleta-Mancera, H. A., Mora-Aguilera, G., Córdova-Téllez, L., González-Hernández, V. A. & Hernández-Martínez, M. (2006). Viabilidad y germinación del grano de polen en líneas de sorgo (Sorghum bicolor L. Moench). In Memorias del XXX Congreso Nacional de Histología Sociedad Mexicana de Histología, pp. 66. México, D.F., Universidad Autónoma Metropolitana.Google Scholar
Cisneros-López, M. E., Mendoza-Onofre, L. E., Mora-Aguilera, G., Córdova-Téllez, L. & Livera-Muñoz, M. (2007). Cold tolerant sorghum hybrids and parental lines. II: Fusarium verticilliodes (Sacc.) Nirenberg effects on seed yield and its components under field conditions. Agrociencia 41, 283294.Google Scholar
Cisneros-López, M. E., Mendoza-Onofre, L. E., Zavaleta-Mancera, H. A., González-Hernández, V. A., Córdova-Téllez, L., Hernández-Martínez, M. & Mora-Aguilera, G. (in press). Floral traits and seed production of sorghum A-, B-, and R- lines under chilling field temperatures. Journal of Agronomy and Crop Science. DOI: 10.1111/j.1439-037X.2009.00399.xGoogle Scholar
Dafni, A., Pacini, E. & Nepi, M. (2005). Pollen and stigma biology. In Practical Pollination Biology (Eds Dafni, A., Kevan, P. G. & Husband, B. C.), pp. 83–146. Cambridge, Canada: NHBS.Google Scholar
Dahlberg, J. A., Bandyopadhyay, R., Rooney, W. L., Odvody, G. N. & Madera-Torres, P. (2001). Evaluation of sorghum germplasm used in US breeding programs for sources of sugary disease resistance. Plant Pathology 50, 681689.CrossRefGoogle Scholar
Edlund, A. F., Sanson, R. & Preuss, D. (2004). Pollen and stigma structure and function. The role of diversity in pollination. The Plant Cell 16, S84S97.CrossRefGoogle ScholarPubMed
Gambín, B. L. & Borrás, L. (2005). Sorghum kernel weight: growth patterns from different position within the panicle. Crop Science 45, 553561.CrossRefGoogle Scholar
Herrero, M. & Hormaza, J. I. (1996). Pistil strategies controlling pollen tube growth. Sexual Plant Reproduction 9, 343347.CrossRefGoogle Scholar
Heslop-Harrison, J. (1982). Pollen–stigma interaction and cross-incompatibility in grasses. Science 215, 13581364.CrossRefGoogle ScholarPubMed
Heslop-Harrison, Y. (2000). Control gates and micro-ecology. The pollen–stigma interaction in perspective. Annals of Botany 85, 5–13.CrossRefGoogle Scholar
Hodnett, G. L., Burson, B. L., Rooney, W. L., Dillon, S. L. & Price, H. J. (2005). Pollen–pistil interactions result in reproductive isolation between Sorghum bicolor and divergent Sorghum species. Crop Science 45, 14031409.CrossRefGoogle Scholar
Hudak, J., Walles, B. & Vennigerholz, F. (1993). The transmitting tissue in Brugmansia suaveolens L., ultrastructure of stylar transmitting tissue. Annals of Botany 71, 177186.CrossRefGoogle Scholar
Lansac, A. R., Sullivan, C. Y., Johnson, B. E. & Lee, K. W. (1994). Viability and germination of the pollen of sorghum (Sorghum bicolor (L.) Moench). Annals of Botany 74, 2733.CrossRefGoogle ScholarPubMed
Livera, M. M. & Carballo, C. A. (1977). Mejoramiento genético del sorgo (Sorghum bicolor (L.) Moench) por tolerancia al frío. Adaptación de genotipos tolerantes. Agricultura Técnica en México 4, 7799.Google Scholar
Marshall, D. L. & Diggle, P. K. (2001). Mechanism of differential pollen donor performance in wild radish Raphanus sativus (Brassicaceae). American Journal of Botany 88, 242257.CrossRefGoogle ScholarPubMed
Martin, F. W. (1959). Staining and observing pollen tubes in the style by means of fluorescence microscopy. Stain Technology 34, 125128.CrossRefGoogle Scholar
Mendoza Onofre, L. E. (1991). Sorgo. In 10 Años de Investigación Agrícola en la Región Central de México, pp. 104118. CIFAP México. Secretaría de Agricultura y Recursos Hidráulicos, Campo Exptal, Valle de México, Publicación Especial No. 4.Google Scholar
Ortiz, C. J. & Carballo, C. A. (1972). La problemática del mejoramiento del sorgo de grano para Valles Altos de México. In Anais do I Simposio Interamericano de Sorgo, pp. 7585. Brasilia, Brasil.Google Scholar
Osuna-Ortega, J., Mendoza-Castillo, Ma. D. C. & Mendoza-Onofre, L. E. (2003). Sorghum cold tolerance, pollen production and seed yield in the Central High Valleys of Mexico. Maydica 48, 125132.Google Scholar
Pizzolato, T. D. (1991). Vascular system of the fertile spikelet of Sorghum (Gramineae, Panicoideae). Canadian Journal of Botany 69, 656670.CrossRefGoogle Scholar
Price, J. H., Hodnett, G. L., Burson, B. L., Dillon, S. L., Stelly, D. M. & Rooney, W. L. (2006). Genotype dependent interspecific hybridization of Sorghum bicolor. Crop Science 46, 26172622.CrossRefGoogle Scholar
Rao, N. G. P., Murty, U. R. & Rana, B. S. (2002). Sorghum. In Evolution and Adaptation of Cereal Crops (Eds Chopra, V. L. & Prakash, S.), pp. 214238. Enfield, NH: Science Publishers, Inc.Google Scholar
Sánchez, A. M., Bosch, M., Bots, M., Nieuwland, J., Feron, R. & Mariani, C. (2004). Pistil factors controlling pollination. The Plant Cell 16, S98–S106.CrossRefGoogle ScholarPubMed
SAS Institute (2002) SAS/SAT. Versión 9.1. Cary, NC: SAS Institute. http://www.colpos.mx/servicios/sas/indexs.htm (verified 1 September 2009).Google Scholar
Sun, Y., Suksayretrup, K., Kirham, M. B. & Liang, G. H. (1991). Pollen tube growth in reciprocal interspecific pollinations of Sorghum bicolor and S. versicolor. Plant Breeding 107, 197202.Google Scholar
Taylor, D. P. & Obendorf, R. L. (2001). Quantitative assessment of some factors limiting seed set in buckwheat. Crop Science 41, 17921799.CrossRefGoogle Scholar
Tuinstra, M. R. & Wedel, J. (2000). Estimation of pollen viability in grain sorghum. Crop Science 40, 968970.CrossRefGoogle Scholar
Vidal-Martínez, V. A., Clegg, M. D., Johnson, B. E., Osuna-García, J. A. & Coutiño-Estrada, B. (2004). Phenotypic plasticity and pollen production components in maize. Agrociencia 38, 273284.Google Scholar
Wang, E., Meinke, H., Ryley, M., Herde, D. & Henzell, B. (2000). On the relation between weather variables and sorghum ergot infection. Australian Journal Agricultural Research 51, 313324.CrossRefGoogle Scholar
Weber, H., Heim, U., Golombeck, S., Borisjuk, L. & Wobus, U. (1998). Assimilate uptake and the regulation of seed development. Seed Science Research 8, 331345.CrossRefGoogle Scholar
Westgate, M. E. & Boyer, J. S. (1986). Reproduction at low silk and pollen water potentials in maize. Crop Science 26, 951956.CrossRefGoogle Scholar
Weterings, K. & Russell, S. D. (2004). Experimental analysis of the fertilization process. The Plant Cell 16, S107S118.CrossRefGoogle ScholarPubMed
Wilcock, C. & Neiland, R. (2002). Pollination failure in plants. Why it happens and when it matters. Trends in Plant Science 7, 270277.CrossRefGoogle ScholarPubMed
Willingale, J. & Mantle, P. G. (1985). Stigma constriction in pearl millet, a factor influencing reproduction and disease. Annals of Botany 56, 109115.CrossRefGoogle Scholar
Wood, A. W., Tan, D. K. Y., Mamun, E. A. & Sutton, B. G. (2006). Sorghum can compensate for chilling-induced grain loss. Journal of Agronomy and Crop Science 192, 445451.CrossRefGoogle Scholar
Young, H. J. & Young, T. P. (1992). Alternative outcomes of natural and experimental high pollen loads. Ecology 73, 639647.CrossRefGoogle Scholar
Zavaleta-Mancera, H. A. & Engleman, M. (1994). Anatomy of the ovule and seed of Manilkara zapota (L.) Van Royen (Sapotaceae). Phytomorphology 44, 169175.Google Scholar