Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T07:13:38.823Z Has data issue: false hasContentIssue false

Physiological acclimatization of fowls to a hot humid environment

Published online by Cambridge University Press:  27 March 2009

J. C. D. Hutchinson
Affiliation:
A.R.C. Poultry Research Centre, King's Buildings, Edinburgh
A. H. Sykes
Affiliation:
A.R.C. Poultry Research Centre, King's Buildings, Edinburgh

Extract

1. The resting heart rate of cocks and hens was measured in varying degrees of heat stress, and during acclimatization to heat.

2. When the rectal temperature was below 110°F. (43·3° C), the heart rate varied inversely with the severity of the climate up to an air temperature around 99° F. (37·2° C).

3. At air temperatures of 99° F. (37·2° C.) and above the heart rate was nearly constant over a wide range of rectal temperatures below 110° F. (43·3° C). It averaged about 50 beats/min. less than in an equable climate.

4. Above 110° F. (43·3° C.) there was an increase of about 30 beats/min./° F. (17 beats/min./° C.) rise in rectal temperature. The rate equalled that found in an equable climate, when the rectal temperature reached 111–112° F. (43·9–44·4° C). Over this zone of body temperature the fowls were often agitated.

5. In severe heat stress there was a slight fall in the heart rate on acclimatization, but this was small compared with the effect of climate.

6. In severe heat stress the heart rate during the day was slightly higher than that at night.

7. The relation of these findings to the mechanism of temperature regulation is discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1953

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barott, H. G., Fritz, J. C., Pringle, E. M. & Titus, A. W. (1938). J. Ntttr. 15, 145.Google Scholar
Barott, H. G. & Pringle, E. M. (1941). J. Nutr. 22, 273.CrossRefGoogle Scholar
Barott, H. G. & Pringle, E. M. (1946). J. Nutr. 31, 35.CrossRefGoogle Scholar
Bazett, H. C. (1949). Physiology of Heat Regulation and the Scietice of Clothing, edited by Newburgh, L. H., chap. 4. Philadelphia: Saunders.Google Scholar
Bazett, H. C., Sunderman, F. W., Doupe, J. & Scott, J. C. (1940). Amer. J. Physiol. 129, 69.CrossRefGoogle Scholar
Bean, W. B. & Eichna, L. W. (1943). Fed. Proc. 2, 144.Google Scholar
Bedford, T. (1946). M.R.C. (War) Memoir, no. 17.Google Scholar
Benedict, F. G., Landauer, W. & Fox, E. L. (1932). Bull. Storrs Agric. Exp. Sta. no. 177.Google Scholar
Bonsma, J. C. (1949). J. Agric. Sci. 39, 204.CrossRefGoogle Scholar
Buckner, G. D., Insko, W. M. Jr. & Martin, J. H. (1932). Amer. J. Physiol. 102, 271.CrossRefGoogle Scholar
Buckner, G. D., Insko, W. M. Jr. & Martin, J. H. (1933). Poult. Sci. 12, 392.CrossRefGoogle Scholar
Burger, J. W. (1949). Wilson Bull. 61, 211.Google Scholar
Burton, A. C., Scott, J. C., McGlone, B. & Bazett, H. C. (1940). Amer. J. Physiol. 129, 84.CrossRefGoogle Scholar
Dontcheff, L. & Kayser, C. (1934). Ann. Physiol. Physicochim. biol. 10, 285.Google Scholar
Edwards, W. F. (1824). De l'influence des agents physiques sur la vie, vol. 1. Paris: Croohard. Cited by Kayser, C. (1939). Ann. Physiol. Physicochim. biol. 15, 1087.Google Scholar
Eichna, L. W., Bean, W. B., Ashe, W. F. & Nelson, N. (1945). Johns Hopk. Hopk. Bull. 76, 25.Google Scholar
Fox, T. N. (1951). Poult. Sci. 30, 477.Google Scholar
Gelineo, S. (1934 a). C.R. Soc. Biol., Paris, 116, 672.Google Scholar
Gelineo, S. (1934 b). C.R. Soc. Biol., Paris, 117, 40.Google Scholar
Gelineo, S. (1936). C.R. Soc. Biol., Paris, 122, 337.Google Scholar
Giaja, A. (1931). Ann. Physiol. Physicochim. biol. 7, 13.Google Scholar
Giaja, J., Chahowitch, X. & Males, B. (1928). C.R. Soc. Biol., Paris, 98, 1155.Google Scholar
Glaser, E. M. (1950). J. Physiol. 110, 330.CrossRefGoogle Scholar
Haldane, J. S. (1905). J. Hyg., Camb., 5, 494.Google Scholar
Haldane, J. S. & Graham, J. I. (1935). Methods of Air Analysis, 4th ed. p. 85. London: Griffin.Google Scholar
Herrington, L. P. (1949). Physiology of Heat Regulation and the Science of Clothing, edited by Newburgh, L. H., p. 269. Philadelphia: Saunders.Google Scholar
Hoffmann, E. & Schaffner, C. S. (1950). Poult. Sci. 29, 365.CrossRefGoogle Scholar
Hutchinson, J. C. D. (1945). Mimeographed report to Flying Personnel Res. Comm. F.P.R.C. no. 624. London: M.R.C.Google Scholar
Hutt, F. B. (1938). Poult. Sci. 17, 454.Google Scholar
Iyer, S. G. (1952). Private communication.Google Scholar
Kayses, C. (1929). C.R. Soc. Biol., Paris, 101, 708.Google Scholar
Kibler, H. H. & Brody, S. (1949). Res. Bull. Mo. Agric. Exp. Sta. no. 450.Google Scholar
Kibler, H. H. & Brody, S. (1951). Res. Bull. Mo. Agric. Exp. Sta. no. 473.Google Scholar
Ladell, W. S. S. (1951). J. Physiol. 115, 296.CrossRefGoogle Scholar
Lamoreux, W. F. (1943). Endocrinology, 32, 497.CrossRefGoogle Scholar
Lee, B. C. (1942). J. Nutr. 23, 83.CrossRefGoogle Scholar
Lee, D. H. K. & Robinson, K. (1941). Proc. Roy. Soc. Qd, 53, 189.Google Scholar
Lee, D. H. K., Robinson, K. & Hines, H. J. G. (1941). Proc. Roy. Soc. Qd, 53, 129.Google Scholar
Lee, D. H. K., Robinson, K. W., Yeates, N. T. M. & Scott, M. I. R. (1945). Poult. Sci. 24, 195.CrossRefGoogle Scholar
Martin, C. J. (1930). Lancet, 2, 675.Google Scholar
Mayer, A. & Nichita, G. (1929 a). Ann. Physiol. Physicochim. biol. 5, 605.Google Scholar
Mayer, A. & Nichita, G. (1929 b). Ann. Physiol. Physicochim. biol. 5, 621.Google Scholar
Miller, D. S. (1939). J. Exp. Zool. 80, 259.CrossRefGoogle Scholar
Mills, C. A. & Ogle, C. (1933). Amer. J. Hyg. 17, 686.Google Scholar
Mitchell, H. H. & Haines, W. T. (1927). J. Agric. Res. 34, 927.Google Scholar
Ogle, C. & Mills, C. A. (1933). Amer. J. Physiol. 103, 606.CrossRefGoogle Scholar
Randall, W. C. (1943). Amer. J. Physiol. 139, 56.CrossRefGoogle Scholar
Randall, W. C. & Hiestand, S. A. (1939). Amer. J. Physiol. 127, 761.Google Scholar
Regan, W. M. & Richardson, G. A. (1938). J. Dairy Sci. 21, 73.CrossRefGoogle Scholar
Riek, B. F., Hardy, M. H., Lee, D. H. K. & Carter, H. B. (1950). Austr. J. Agric. Res. 1, 217.CrossRefGoogle Scholar
Riek, B. F. & Lee, D. H. K. (1948 a). J. Dairy Sci. 15, 219.Google Scholar
Riek, B. F. & Lee, D. H. K. (1948 b). J. Dairy Sci. 15, 227.Google Scholar
Robinson, K. & Lee, D. H. K. (1941 a). Proc. Roy. Soc. Qd, 53, 145.Google Scholar
Robinson, K. & Lee, D. H. K. (1941 b). Proc. Roy. Soc. Qd, 53, 159.Google Scholar
Robinson, K. & Lee, D. H. K. (1941 C). Proc. Roy. Soc. Qd, 53, 171.Google Scholar
Robinson, K. W. & Lee, D. H. K. (1947). J. Anim. Sci. 6, 182.Google Scholar
Rodbard, S. & Tolpin, M. (1947). Amer. J. Physiol. 151, 509.CrossRefGoogle Scholar
Romijn, C. (1950). Tijdschr. Diergeneesk 75, 719.Google Scholar
Von Saalfeld, E. F. (1936). Z. vergl. Physiol. 23, 727.CrossRefGoogle Scholar
Scott, J. C., Bazett, H. C. & Mackie, G. C. (1940). Amer. J. Physiol. 129, 102.CrossRefGoogle Scholar
Shelley, W. B. & Hemingway, A. (1940). Amer. J. Physiol. 129, 623.CrossRefGoogle Scholar
Siple, P. A. (1949). Physiology of Heat Regulation and the Science of Clothing, edited by Newburgh, L. H., p. 392. Philadelphia: Saunders.Google Scholar
Sutton, H. (1909). J. Path. Bact. 13, 62.CrossRefGoogle Scholar
Terroine, E. F. & Trautmann, S. (1927). Ann.Physiol. Physicochim. biol. 3, 422.Google Scholar
Tolpin, M. & Rodbard, S. (1947). Fed. Proc. 6, 215.Google Scholar
Warren, D. C., Conrad, R., Schumacher, A. F. & Avery, T. B. (1950). Tech. Bull. Kansas Agric. Exp. Sta. no. 68.Google Scholar
Weiner, J. S. (1950). Brit. J. Industr. Med. 7, 17.Google Scholar
Wilson, W. O. (1948). Poult. Sci. 27, 813.CrossRefGoogle Scholar
Wilson, W. O. (1949). Poult. Sci. 28, 581.CrossRefGoogle Scholar
Wilson, W. O., Hillerman, S. P. & Edwards, W. H. (1952). Poult. Sci. 31, 843.Google Scholar
Woitkewitsch, A. A. (1935). Virchows Arch. 94, 653.CrossRefGoogle Scholar
Yeates, N. T. M., Lee, D. H. K. & Hines, H. J. G. (1941). Proc. Roy. Soc. Qd, 53, 105.Google Scholar