Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T21:53:19.224Z Has data issue: false hasContentIssue false

Performance of the RothC-26.3 model in short-term experiments in Mexican sites and systems

Published online by Cambridge University Press:  10 March 2011

L. GONZÁLEZ-MOLINA*
Affiliation:
Universidad Autónoma Chapingo. Km. 38.5 Carr. México-Texcoco. Chapingo, Edo. México. México. C.P. 56230
J. D. ETCHEVERS-BARRA
Affiliation:
Edafología, Campus Montecillo, Colegio de Postgraduados, 56230 Montecillo, Estado de México
F. PAZ-PELLAT
Affiliation:
Edafología, Campus Montecillo, Colegio de Postgraduados, 56230 Montecillo, Estado de México
H. DÍAZ-SOLIS
Affiliation:
Edafología, Campus Montecillo, Colegio de Postgraduados, 56230 Montecillo, Estado de México
M. H. FUENTES-PONCE
Affiliation:
Universidad Autónoma Metropolitana-Xochimilco, Laboratorio de Fisiología y Tecnología de Cultivos, Calzada del Hueso 1100, Col. Villa Quietud, 04960, D.F., México
S. COVALEDA-OCÓN
Affiliation:
Edafología, Campus Montecillo, Colegio de Postgraduados, 56230 Montecillo, Estado de México
M. PANDO-MORENO
Affiliation:
Edafología, Campus Montecillo, Colegio de Postgraduados, 56230 Montecillo, Estado de México
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

Information on the performance of the Rothamsted organic carbon turnover model (RothC model) in predicting changes in soil organic carbon (SOC) in short-term experiments is scarce. In Mexico, it was found that these experiments covered not more than 20 years. The purpose of the present study was to evaluate short-term SOC prediction performance of the RothC model in the following systems: (1) farming with residues added (A+R), (2) farming with no added residues (A−R), (3) pure forest stands (F), (4) grasslands (GR) and (5) rangeland (RL). Work was done in five experimental sites: Atécuaro, Michoacán; Santiago Tlalpan, Tlaxcala; El Batán, State of Mexico; Sierra Norte, Oaxaca; and Linares, Nuevo León. Carbon (C) inputs to the soil were plant residues and organic fertilizers, which need to be known to operate the RothC model. The adjustment coefficients for site modelling had R2 values of 0·77–0·95 and model efficiency (EF) was −0·60 to 0·93. When RothC performance was evaluated by a system, R2 values were 0·06–0·92 and EF was −0·24 to 0·90. The low R2 and EF values in rangelands were attributed to the fact that these systems are complex because of heterogeneous vegetation, soil and climate. In general, the evaluation of the RothC model indicates that it can be useful in simulating SOC changes in temperate and warm climate sites and in farming, forest and grassland systems in Mexico.

Type
Climate Change and Agriculture
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Acosta, M. J. (2003). Diseño y aplicación de un método para estimar los almacenes de carbono en sistemas con vegetación forestal y agrícolas de ladera en México. PhD thesis, Colegio de Postgraduados, Programa Forestal, Montecillo, México.Google Scholar
Bravo-Garza, M. R. & Bryan, R. B. (2005). Soil properties along cultivation and fallow time sequences on vertisoles in northeastern Mexico. Soil Science Society of America Journal 69, 473481.CrossRefGoogle Scholar
Campbell, C. A., Zentner, R. P., Selles, F., Biederbeck, V. O., McConkey, B. G., Blomert, B. & Jefferson, P. G. (2000). Quantifying short-term effects of crop rotations on soil organic carbon in southwestern Saskatchewan. Canadian Journal of Soil Science 80, 193202.CrossRefGoogle Scholar
CNA. (2007 b). Estación: 00029010 Hueyotlipan. Normales climatológicas 1971–2000. Available online at: http://smn.cna.gob.mx/climatologia/normales/estacion/tlax/NORMAL29010.TXT Date of consultation: 9 Oct 2007 (verified 9 Feb 2011).Google Scholar
Coleman, K. & Jenkinson, D. S. (1996). RothC-26.3 – a model for the turnover of carbon in soil. In Evaluation of Soil Organic Matter Models using Existing Long-term Datasets (Eds Powlson, D. S., Smith, P. & Smith, J. U.), pp. 237246. NATO ASI Series I, Volume 38. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Coleman, K. & Jenkinson, D. S. (2005). ROTHC-26.3. A Model for the Turnover of Carbon in Soil. Model Description and Windows Users’ Guide. Rothamsted, UK: IACR.Google Scholar
Coleman, K., Jenkinson, D. S., Crocker, G. J., Grace, P. R., Klir, J., Korschens, M., Poulton, P. R. & Richter, D. D. (1997). Simulating trends in soil organic carbon in long-term experiments using RothC-26.3. Geoderma 81, 2944.CrossRefGoogle Scholar
Comisión Nacional del Agua (CNA). (2007 a). Estación: 00016120 Santiago Undameo. Normales climatológicas 1971–2000. Available online at: http://smn.cna.gob.mx/climatologia/normales/estacion/mich/NORMAL16120.TXT. Date of consultation: 9 Oct 2007 (verified 9 Feb 2011).Google Scholar
Conant, R. T. & Paustian, K. (2002). Spatial variability of organic carbon in grasslands: implications for detecting change at different scales. Environmental Pollution 116(Suppl. 1), S127S135.CrossRefGoogle ScholarPubMed
Cortés, J. I., Turrent, A., Díaz, P., Hernández, E., Mendoza, R. & Aceves, E. (2005). Manual para el Establecimiento y Manejo del Sistema milpa Intercalada con Árboles Frutales (MIAF) en Laderas. Montecillo, México: Colegio de Postgraduados.Google Scholar
Covaleda, O. S. (2008). Influencia de diferentes impactos antrópicos en la dinámica del C y la fertilidad de suelos volcánicos mexicanos, implicaciones sobre el secuestro de C. PhD thesis, Universidad de Valladolid, Escuela Técnica superior de ingenierías agrarias, Departamento de Ciencias Forestales, Palencia, España.Google Scholar
Díaz-Solís, H., Kothmann, M. M., Grant, W. E. & De Luna-Villarreal, R. (2006). Use of irrigated pastures in semi-arid grazinglands: a dynamic model for stocking rate decisions. Agricultural Systems 88, 316331.CrossRefGoogle Scholar
Díaz-Solís, H., Kothmann, M. M., Hamilton, W. T. & Grant, W. E. (2003). A simple ecological sustainability simulator (SESS) for stocking rate management on semi-arid grazinglands. Agricultural Systems 76, 655680.CrossRefGoogle Scholar
Edwards, N. T. & Harris, W. F. (1977). Carbon cycling in mixed deciduous forest floor. Ecology 58, 431437.CrossRefGoogle Scholar
Ellert, B. H., Janzen, H. H. & McConkey, B. G. (2001). Measuring and comparing soil carbon storage. In Assessment Methods for Soil Carbon (Eds Lal, R., Kimble, J. M., Follet, R. F. & Stewart, B. A.), pp. 131146. Boca Raton, FL: CRC Press.Google Scholar
Falloon, P. & Smith, P. (2002). Simulating SOC changes in long-term experiments with RothC and CENTURY: model evaluation for a regional scale application. Soil Use and Management 18, 101111.CrossRefGoogle Scholar
Falloon, P., Smith, P., Coleman, K. & Marshall, S. (1998). Estimating the size of the inert organic matter pool from total soil organic carbon content for use in the Rothamsted carbon model. Soil Biology and Biochemistry 30, 12071211.CrossRefGoogle Scholar
FAO (1998). World Reference Base for Soil Resources. Rome: FAO.Google Scholar
Fechter-Escamilla, U., Vera, A. & Werner, G. (1997). Erosión hídrica en un suelo volcánico endurecido (tepetate t3) en el bloque de Tlaxcala, México. In Tercer Simposio Internacional: Suelos Volcánicos y Endurecidos (Eds Zebrowski, C., Quantin, P. & Trujillo, G.), pp. 351358. Quito, Ecuador: ORSTOM.Google Scholar
Figueroa-Navarro, C., Etchevers-Barra, J. D., Velázquez-Martínez, A. & Acosta-Mireles, M. (2005). Concentración de carbono en diferentes tipos de vegetación de la Sierra Norte de Oaxaca. Terra Latinoamericana 23, 5764.Google Scholar
Fischer, R. A., Santiveri, F. & Vidal, I. R. (2002). Crop rotation, tillage and crop residue management for wheat and maize in the sub-humid tropical highlands II Maize and system performance. Field Crops Research 79, 123137.CrossRefGoogle Scholar
Fuentes, M., Govaerts, B., De León, F., Hidalgo, C., Dendooven, L., Sayre, K. D. & Etchevers, J. (2009). Fourteen years of applying zero and conventional tillage, crop rotation and residue management systems and its effect on physical and chemical soil quality. European Journal of Agronomy 30, 228237.CrossRefGoogle Scholar
González-Molina, L., Etchevers-Barra, J. D. & Hidalgo-Moreno, C. (2008). Carbono en suelos de ladera: factores que deben considerarse para determinar su cambio en el tiempo. Agrociencia 42, 741751.Google Scholar
González Rodríguez, H., Cantú Silva, I., Gómez Meza, M. V. & Ramírez Lozano, R. G. (2004). Plant water relations of thornscrub shrub species, north-eastern Mexico. Journal of Arid Environments 58, 483503.CrossRefGoogle Scholar
Guo, L., Falloon, P., Coleman, K., Zhou, B., Li, Y., Lin, E. & Zhang, F. (2007). Application of the RothC model to the results of long-term experiments on typical upland soils in northern China. Soil Use and Management 23, 6370.CrossRefGoogle Scholar
Instituto Mexicano de Tecnología del Agua (IMTA) (2000). Extractor Rápido de Información Climátológica, ERIC-2. CD-ROM. Morelos, México: IMTA.Google Scholar
Janik, L., Spouncer, L., Correll, R. & Skjemstad, J. (2002). Sensitivity Analysis of the Roth-C soil Carbon Model (version 26.3 Excel©). National Carbon Accounting System Technical Report No. 30. SIRO Land and Water and Mathematical and Information Sciences. Canberra, Australia: The Australian Greenhouse Office.Google Scholar
Jenkinson, D. S., Meredith, J., Kinyamario, J. I., Warren, G. P., Wong, M. T. F., Harkness, D. D., Bol, R. & Coleman, K. (1999). Estimating net primary production from measurements made on soil organic matter. Ecology 80, 27622773.CrossRefGoogle Scholar
Kaonga, M. L. & Coleman, K. (2008). Modelling soil organic carbon turnover in improved fallows in eastern Zambia using the RothC-26.3 model. Forest Ecology and Management 256, 11601166.CrossRefGoogle Scholar
Kuzyakov, Y. & Domanski, G. (2000). Carbon input by plants into the soil. Review. Journal of Plant Nutrition and Soil Science 163, 421431.3.0.CO;2-R>CrossRefGoogle Scholar
Lal, R. (1997). Low input agriculture and greenhouse gas emissions. Terra 15, 109117.Google Scholar
Lal, R. (2009). Challenges and opportunities in soil organic matter research. European Journal of Soil Science 60, 158169.CrossRefGoogle Scholar
Le Houerou, H. N. (1984). Rain use efficiency: a unifying concept in arid-land ecology. Journal of Arid Environments 7, 213247.CrossRefGoogle Scholar
Le Houerou, H. N., Bingham, R. L. & Skerbek, W. (1988). Relationship between the variability of primary production and the variability of annual precipitation in world arid lands. Journal of Arid Environments 15, 118.CrossRefGoogle Scholar
Liu, D. L., Chan, K. Y. & Conyers, M. K. (2009). Simulation of soil organic carbon under different tillage and stubble management practices using the Rothamsted carbon model. Soil and Tillage Research 104, 6573.CrossRefGoogle Scholar
Marland, G., Andres, R. J., Boden, T. A., Johnston, C. & Brenkert, A. (1999). Global, Regional and National CO2 Emission Estimates from Fossil Fuel Burning, Cement Production and Gas Flaring, 1751–1996. Report NDP-030. Oakridge National Laboratory, Oakridge, TN, USA: Carbon Dioxide Information Analysis Center.Google Scholar
Melgoza-Castillo, A. (2006). Current situation of rangelands in Mexico. In Grasslands Ecosystems, Endangered Species, and Sustainable Ranching in the Mexico-U.S. Borderlands: Conference Proceedings (Eds Basurto, X. & Hadley, D.), pp. 8586. USDA Forest Service Proceedings RMRS P-40. Fort Collins, CO, USA: US Department of Agriculture, Forest Research Service, Rocky Mountain Research Station.Google Scholar
Monreal, C. M., Etchevers, J. D., Acosta, M., Hidalgo, C., Padilla, J., López, R. M., Jimenez, L. & Veláquez, A. (2005). A method for measuring above- and below-ground C stocks in hillside landscapes. Canadian Journal of Soil Science 85, 523530.CrossRefGoogle Scholar
Nárvar-Chaidez, J. & De, J. (2008). Carbon fluxes resulting from land-use changes in the Tamaulipan thornscrub of northeastern Mexico. Carbon Balance and Management 3, 6. doi: 10.1186/1750-0680-3-6.CrossRefGoogle Scholar
Navarro, H. & Flores, D. (1997). Manejo agronómico diferencial de la asociación maíz-haba en tepetate de quinto año de uso agrícola. In Tercer Simposio Internacional: Suelos Volcánicos y Endurecidos (Eds Zebrowski, C., Quantin, P. & Trujillo, G.), pp. 287295. Quito, Ecuador: ORSTOM.Google Scholar
Ordóñez, J. A. B., De Jong, B. H. J., García-Oliva, F., Aviña, F. L., Pérez, J. V., Guerrero, G., Martínez, R. & Masera, O. (2008). Carbon content in vegetation, litter, and soil under 10 different land-use and land-cover classes in the Central Highlands of Michoacan, Mexico. Forest Ecology & Management 255, 20742084.CrossRefGoogle Scholar
Pando-Moreno, M., Jurado, E., Manzano, M. & Estrada, E. (2004). The influence of land use on desertification processes. Journal of Range Management 57, 320324.CrossRefGoogle Scholar
Pérez, O. A., Etchevers, J. D., Navarro, G. H. & Nuñez, E. R. 2000. Aporte de los residuos del cultivo anterior al reservorio de nitrógeno en tepetates. Agrociencia 34, 115125.Google Scholar
Persson, H. (1978). Root dynamics in young Scots pine stand in central Sweden. Oikos 30, 508519.CrossRefGoogle Scholar
Post, W. M., Izaurralde, R. C., Mann, L. K. & Bliss, N. (2001). Monitoring and verifying changes of organic carbon in soil. Climatic Change 51, 7399.CrossRefGoogle Scholar
Proyecto de Manejo Sostenible de Laderas (PMSL). (2009). Subproyecto 1. Caracterización Geográfica y Medición de Escurrimientos. Available online at: http://www.colpos.mx/proy_rel/ladera/SubproyectoA.htm. Date of consultation: 10 Aug 2009 (verified 9 Feb 2011).Google Scholar
Rivero, C. & Carecedo, C. (1999). Efecto del uso de la gallinaza sobre algunos parámetros de fertilidad química de dos suelos de pH contrastante. Revista de la Facultad de Agronomía 25, 8393.Google Scholar
Shirato, Y., Paisancharoen, K., Sangtong, P., Nakviro, C., Yokozawa, M. & Matsumoto, N. (2005). Testing the Rothamsted CarbonModel against data from long-term experiments on upland soils in Thailand. European Journal of Soil Science 56, 179188.CrossRefGoogle Scholar
Skjemstad, J. O., Spouncer, L. R., Cowie, B. & Swift, R. S. (2004). Calibration of the Rothamsted organic carbon turnover model (RothC ver. 26.3), using measurable soil organic carbon pools. Australian Journal Soil Research 42, 7988.CrossRefGoogle Scholar
Smith, P., Falloon, P., Coleman, K., Smith, J. U., Piccolo, M., Cerri, C. C., Bernoux, M., Jenkinson, D. S., Ingram, J. S. I., Szabo, J. & Pasztor, L. (2000). Modelling soil carbon dynamics in tropical ecosystems. In Global Climate Change and Tropical Ecosystems (Eds Lal, R., Kimble, J. M. & Stewart, B. A.), pp. 341364. London: CRC Press.Google Scholar
Smith, P. & Olesen, J. E. (2010). Synergies between the mitigation of, and adaptation to, climate change in agriculture. Journal of Agricultural Science, Cambridge 148, 543552.CrossRefGoogle Scholar
Smith, P., Smith, J. U., Powlson, D. S., Mcgill, W. B., Arah, J. R. M., Chertov, O. G., Coleman, K., Franko, U., Frolking, S., Jenkinson, D. S., Jensen, L. S., Kelly, R. H., Klein-Gunnewiek, H., Komarov, A. S., Li, C., Molina, J. A. E., Mueller, T., Parton, W. J., Thornley, J. H. M. & Whitmore, A. P. (1997). A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments. Geoderma 81, 153225.CrossRefGoogle Scholar