Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-03T18:20:18.352Z Has data issue: false hasContentIssue false

Observations on the mineral metabolism of pullets. V: Acid-base equilibrium and reproductive activity

Published online by Cambridge University Press:  27 March 2009

R. H. Common
Affiliation:
Chemical Research Division of the Ministry of Agriculture for Northern Ireland and the Queen's University of Belfast

Extract

1. Calcium and phosphorus balance experiments with pullets during which the plasma alkali reserve of the birds was followed are described. Evidence is produced in support of the view that the onset of reproductive activity in the pullet is accompanied by an increase in plasma alkali reserve, as well as of calcium retention, provided the ration contains adequate calcium carbonate.

2. These high levels of plasma alkali reserve tend to decrease with the beginning of laying, but apparently the plasma alkali reserve of laying birds tends in general to remain higher than that of the non-laying bird or of cocks.

3. The possible bearing of these observations on bone mineral composition and Ca/P retention ratios is discussed.

4. It is shown that on a cereal ration moderately low in calcium, where the apparent digestibility, of phytic acid phosphorus is of the order of 40–70%, it was not possible to correlate apparent digestibility with the calcium metabolism of shell formation. When the same ration was supplemented with 5% calcium carbonate, so that the apparent digestibility was of the order of 9–25%, then it was possible under circumstances of intense laying to detect a slight increase of apparent digestibility in association with laying.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1941

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Avery, T. B., Scott, H. M. & Conrad, R. M. (1940 a). Poult. Sci. 19, 321.CrossRefGoogle Scholar
Avery, T. B., Scott, H. M. & Conrad, R. M. (1940 b). Poult. Sci. 19, 324.CrossRefGoogle Scholar
Benjamin, H. R. & Hess, A. E. (1933). J. biol. Chem. 103, 629.CrossRefGoogle Scholar
Burckhardt, H. (1933). Der Einfluss einiger Säuren auf den Ca-, P- und N-Stoff-weohsel und das Säure-Basegleichgewicht bei Hühnern. Rep. Versuchsanstalten, Liebefeld-Bern. (Nutr. Abstr. Rev. (3933) 3, 1094.)Google Scholar
Common, R. H. (1932). J. agric. Sci. 22, 576.CrossRefGoogle Scholar
Common, R. H. (1936). J. agric. Sci. 26, 85.CrossRefGoogle Scholar
Common, R. H. (1938). J. agric. Sci. 28, 347.CrossRefGoogle Scholar
Common, R. H. (1940 a). Analyst, 65, 79.CrossRefGoogle Scholar
Common, R. H. (1940 b). J. agric. Sci. 30, 113.CrossRefGoogle Scholar
Deobald, H. J., Christiansen, J. B., Hart, E. B. & Halpin, J. G. (1938). Poult. Sci. 17, 115.Google Scholar
Fiske, C. H. & Subbarrow, Y. (1925). J. biol. Chem. 46, 375.CrossRefGoogle Scholar
Godden, W. (1937). Tech. Commun. Bur. Anim. Nutrit., Aberd., 9, 10.Google Scholar
Goto, K. (1918). J. biol. Chem. 35, 355.CrossRefGoogle Scholar
Heller, V. G. & Pursell, L. (1937). J. biol. Chem. 118, 549.CrossRefGoogle Scholar
Knowles, H. R., Hart, E. B. & Halpin, J. G. (1935). Poult. Sci. 14, 83.CrossRefGoogle Scholar
McCance, R. A. & Widdowson, E. M. (1935). Biochem. J. 29, 2694.CrossRefGoogle Scholar
Morgulis, S. (1931). J. biol. Chem. 93, 455.CrossRefGoogle Scholar
Pearl, R. & Surface, E. M. (1909). Science, 29, 428.Google Scholar
Peters, J. P. & Van Slyke, D. D. (1931). Quantitative Clinical Chemistry, 1.Google Scholar
Solum, A. S. & Schuster, M. (1934). Tierernährung, 6, 515.Google Scholar
Tarchanoff, J. R. (1884). Pflüg. Archi. ges. Physiol. 33, 303.CrossRefGoogle Scholar
Titus, H. W., McNalley, E. & Hilbero, F. C. (1933). Poult. Sci. 12, 5.CrossRefGoogle Scholar
Tyler, C. (1940). Biochem. J. 34, 202.CrossRefGoogle Scholar