Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-22T09:43:12.089Z Has data issue: false hasContentIssue false

Modelling the reproductive efficiency in a beef cow herd: effect of calving date, bull exposure and body condition at calving on the calving–conception interval and calving distribution

Published online by Cambridge University Press:  21 February 2008

F. BLANC
Affiliation:
ENITAC – Unité Elevage et Production des Ruminants BP 35, Lempdes, F63370, France
J. AGABRIEL*
Affiliation:
INRA-UR1213 Unité de Recherches sur les Herbivores, Saint Genès Champanelle, F63122, France
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

A model of reproductive performance was developed to study the influences of breeding management decisions and animal characteristics on the reproductive performance and the calving distribution in a beef herd. In the model, reproductive performance is formalized as a sequence of events (parturition, ovulation, conception), each of which modifies the reproductive status of the simulated cow. With respect to reproduction, a cow can be in one of three possible states: open-not-cycling, open-cycling or pregnant. The length of the different intervals that are included between two successive reproductive events (calving to first cycle interval, length of oestrous cycles, calving–conception and calving intervals) is formalized using stochastic or empirical laws that may be influenced by numerous animal or environmental factors or by management decisions (feeding strategy, breeding season and length of the breeding period). Within the herd, cows are considered to differ from each other by their parity, calving date, body condition at calving and their bull exposure.

Calving to first oestrous interval (postpartum anoestrous interval (PPAI)) is expressed as the sum of three equations which formalize the respective effects of calving date, body condition score at calving (BCScalving) and the response to early bull exposure in interaction with BCScalving. The influences of these variables on reproductive performance were quantified by analysing data sets (three bibliographical and two experimental) or by expertise. Special attention was paid to the influence of calving date on PPAI and a biological interpretation of this effect is proposed. Probabilities of natural insemination success were estimated according to the number of oestrus and the number of matings.

The model was fitted to data from primiparous Charolais cows (n=139) bred at the experimental station Laqueuille (French National Institute for Agricultural Research (INRA)). Its ability to simulate PPAI was tested using an independent data set of primiparous Charolais cows (n=188) from the experimental farm Le Pin. The model only accounts for 39% of the observed inter-individual variability. However, the analysis of the mean square deviation components led to validation of the structure of the model. In particular, the assumption that the influence of calving date on PPAI can be attributed to a sensitivity of the reproductive function to the variation of the photoperiod during the month preceding parturition was confirmed. Simulations also revealed that fat cows could have similar anoestrus to thin cows when they are exposed early to a bull. Such a result emphasized the necessity to investigate further and better calibrate the combined effects of BCS at calving and bull exposure on PPAI.

Type
Modelling Animal Systems Paper
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agabriel, J., Giraud, J. M. & Petit, M. (1986). Détermination et utilisation de la note d'état d'engraissement en élevage allaitant. Bulletin Technique CRZV Theix INRA 66, 4350.Google Scholar
Agabriel, J., Grenet, N. & Petit, M. (1992). Etat corporel et intervalle entre vêlages chez la vache allaitante. Bilan de deux années d'enquêtes en exploitation. INRA Productions Animales 5, 355369.CrossRefGoogle Scholar
Agabriel, J., Bony, J. & Micol, D. (1996). Elevage du bison d'Amérique (Bison bison). INRA Productions Animales 9, 379388.CrossRefGoogle Scholar
Agabriel, J., Blanc, F., Egal, D. & Dhour, P. (2004). Influences combinées de la saison de mise bas et de l'exposition au taureau sur la venue en cyclicité de Vaches Charolaises. Rencontres Recherches Ruminants 11, 398.Google Scholar
Azzam, S. M., Kinder, J. E. & Nielsen, M. K. (1990). Modelling reproductive management systems for beef cattle. Agricultural Systems 34, 103122.CrossRefGoogle Scholar
Bellows, R. A. & Short, R. E. (1978). Effects of precalving feed level on birth weight, calving difficulty and subsequent fertility. Journal of Animal Science 46, 15221528.CrossRefGoogle Scholar
Blanc, F., Martin, G. B. & Bocquier, F. (2001). Modelling reproduction in farm animals: a review. Reproduction, Fertility and Development 13, 337353.CrossRefGoogle ScholarPubMed
Chemineau, P., Malpaux, B., Brillard, J. P. & Fostier, A. (2007). Seasonality of reproduction and production in farm fishes, birds and mammals. Animal 1, 419432.CrossRefGoogle ScholarPubMed
Coulon, J. B., Chilliard, Y. & Remond, B. (1991). Effets du stade physiologique et de la saison sur la composition chimique du lait de vache et des caractéristiques technologiques. INRA Productions Animales 4, 219228.CrossRefGoogle Scholar
Denham, S. C., Larsen, R. E., Boucher, J. & Adams, E. L. (1991). Structure and behaviour of a deterministic model of reproductive performance in beef cattle. Agricultural Systems 35, 2136.CrossRefGoogle Scholar
Ducrot, C., Grohn, Y. T., Humblot, P., Bugnard, F., Sulpice, P. & Gilbert, O. (1994). Postpartum anestrus in French beef cattle: an epidemiological study. Theriogenology 5, 753764.CrossRefGoogle Scholar
Fike, K. E., Bergfeld, E. G., Cupp, A. S., Kojima, F. N., Mariscal, V., Sanchez, T. S., Wehrman, M. E. & Kinder, J. E. (1996). Influence of fenceline bull exposure on duration of postpartum anoestrus and pregnancy rate in beef cows. Animal Reproduction Science 41, 161167.CrossRefGoogle Scholar
Freer, M., Moore, A. D. & Donnelly, J. R. (1997). GRAZPLAN: decision support systems for Australian grazing enterprises-II. The animal biology model for feed intake, production and reproduction and the GrazFeed DSS. Agricultural Systems 54, 77126.CrossRefGoogle Scholar
Friggens, N. C. (2003). Body lipid reserves and the reproductive cycle: towards a better understanding. Livestock Production Science 83, 219236.CrossRefGoogle Scholar
Garel, J. P., Gauthier, D., Petit, M. & Thimonier, J. (1987). Influence de la photopériode sur l'évolution du poids vif et l'activité ovarienne post partum chez les vaches allaitantes. Reproduction, Nutrition and Development 27, 305306.CrossRefGoogle Scholar
Gauch, H. G. Jr., Gene Hwang, J. T. G. & Fick, G. W. (2003). Model evaluation by comparison of model-based predictions and measured values. Agronomy Journal 95, 14421446.CrossRefGoogle Scholar
Hansen, P. J. & Hauser, E. R. (1983). Genotype×environmental interactions on reproductive traits of bovine females. III. Seasonal variation in postpartum reproduction as influenced by genotype, suckling and dietary regimen. Journal of Animal Science 56, 13621369.CrossRefGoogle Scholar
Hansen, P. J. & Hauser, E. R. (1984). Photoperiodic alteration of post-partum reproductive function in suckled cows. Theriogenology 22, 114.CrossRefGoogle Scholar
Hauser, E. R. (1984). Seasonal effects on female reproduction in the bovine (Bos taurus) (European Breeds). Theriogenology 21, 150169.CrossRefGoogle Scholar
Humblot, P., Grimard, P., Ribon, O., Khireddine, B., Dervishi, V. & Thibier, M. (1996). Sources of variation of post-partum cyclicity, ovulation and pregnancy rates in primiparous Charolais cows treated with Norgestomet implants and PMSG. Theriogenology 46, 10851096.CrossRefGoogle ScholarPubMed
King, G. J. & Macleod, G. K. (1984). Reproductive function in beef cows calving in the spring or fall. Animal Reproduction Science 6, 255266.CrossRefGoogle Scholar
Knight, T. W. & Nicoll, G. B. (1978). Factors influencing the interval from calving to first oestrous in beef cattle on North Island hill country. Proceedings of the New Zealand Society of Animal Production 38, 175180.Google Scholar
Lalman, D. L., Keisler, D. H., Williams, J. E., Scholljegerdes, E. J. & Mallett, D. M. (1997). Influence of postpartum weight and body condition change on duration of anestrus by undernourished suckled beef heifers. Journal of Animal Science 75, 20032008.CrossRefGoogle ScholarPubMed
Lancelot, R., Lessnoff, M. & Mcdermott, J. (2002). Use of Akaike information criteria for model selection and inference. An application to assess prevention of gastrointestinal parasitism and respiratory mortality in guinean goats in Kolda, Senegal. Preventive Veterinary Medicine 55, 217240.CrossRefGoogle ScholarPubMed
Laster, D. B., Glimp, H. A. & Gregory, K. E. (1973). Effects of early weaning on postpartum reproduction of cows. Journal of Animal Science 36, 734740.CrossRefGoogle ScholarPubMed
Lowman, B. G. (1985). Feeding in relation to suckler cow management and fertility. Veterinary Record 117, 8085.CrossRefGoogle ScholarPubMed
MacGregor, R. G. & Casey, N. H. (1999). Evaluation of calving interval and calving date as measures of reproductive performance in a beef herd. Livestock Production Science 57, 181191.CrossRefGoogle Scholar
Madrigal, M. A., Colin, J. V. & Hallford, D. M. (2001). Influencia de la condición corporal y la bioestimulación sobre la eficiencia reproductiva en vacas de raza Simmental en agostadero. Veterinaria Mexico 32, 8792.Google Scholar
Mialon, M. M., Renand, G., Krauss, D. & Ménissier, F. (2000). Genetic variability of the length of postpartum anoestrus in Charolais cows and its relationship with age at puberty. Genetics Selection Evolution 32, 403414.CrossRefGoogle ScholarPubMed
Montgomery, G. W., Davis, G. H. & Hurrell, G. A. (1980). Interval from calving to first oestrous in autumn- and spring-calving herds in the same locality. Proceedings of the New Zealand Society of Animal Production 40, 208284.Google Scholar
Montgomery, G. W., Scott, I. C. & Hudson, N. (1985). An interaction between season of calving and nutrition on the resumption of ovarian cycles in post-partum beef cattle. Journal of Reproduction and Fertility 73, 4550.CrossRefGoogle ScholarPubMed
Morris, C. A. (1984). Calving dates and subsequent intercalving intervals in New Zealand beef herds. Animal Production 39, 5157.Google Scholar
Morris, S. T., Pleasants, A. B. & Barton, R. A. (1978). Post-partum oestrous interval of single-suckled Angus beef cows. New Zealand Journal of Agricultural Research 21, 577582.CrossRefGoogle Scholar
Oltenacu, P. A., Milligan, R. A., Rounsaville, T. R. & Foote, R. H. (1980). Modelling reproduction in a herd of dairy cattle. Agricultural Systems 5, 193205.CrossRefGoogle Scholar
Osoro, K. & Wright, I. A. (1992). The effect of body condition, live weight, breed, age, calf performance, and calving date on reproductive performance of spring-calving beef cows. Journal of Animal Science 70, 16611666.CrossRefGoogle ScholarPubMed
Peters, A. R. & Riley, G. M. (1982 a). Is the cow a seasonal breeder? British Veterinary Journal 138, 533537.CrossRefGoogle ScholarPubMed
Peters, A. R. & Riley, G. M. (1982 b). Milk progesterone profiles and factors affecting post partum ovarian activity in beef cows. Animal Production 34, 145153.Google Scholar
Petit, M. (1979). Effet du niveau d'alimentation à la fin de la gestation sur le poids à la naissance des veaux et leur devenir. Annales de Biologie Animale, Biochimie, Biophysique 19, 277287.CrossRefGoogle Scholar
Petit, M., Jarrige, R., Russel, A. J. F. & Wright, I. A. (1992). Feeding and nutrition of the suckler cow. In Beef Cattle Production (Eds Jarrige, R. & Béranger, C.), pp. 191208. Amsterdam, The Netherlands: Elsevier.Google Scholar
Pleasants, A. B. (1997). Use of a stochastic model of a calving distribution for beef cows for formulating optimal natural mating strategies. Animal Science 64, 413421.CrossRefGoogle Scholar
Pleasants, A. B. & McCall, D. G. (1993). Relationships among post-calving anoestrous interval, oestrous cycles, conception rates and calving date in Angus and Hereford×Friesian cows calving in six successive years. Animal Production 56, 187192.Google Scholar
Pleasants, A. B., Barton, R. A., Morris, S. T. & Anderson, W. J. (1991). Optimization of ‘herd-in-calf-rate’ with respect to the length of the post-partum anoestrous period in Angus cows suckling calves. Proceedings of the New Zealand Society of Animal Production 51, 459463.Google Scholar
Sas Institute (2000). SAS/STAT Users' Guide, Version 8 Edition 2000. Cary, NC, USA: SAS Institute, Inc.Google Scholar
Sanders, J. O. & Cartwright, T. C. (1979). A general cattle production systems model. I: Structure of the model. Agricultural Systems 4, 217227.CrossRefGoogle Scholar
Sanz, A., Bernues, A., Villalba, D., Casasus, I. & Revilla, R. (2004). Influence of management and nutrition on postpartum interval in Brown Swiss and Pirenaica cows. Livestock Production Science 86, 179191.CrossRefGoogle Scholar
Short, R. E., Bellows, R. A., Staigmiller, R. B., Berardinelli, J. G. & Custer, E. E. (1990). Physiological mechanisms controlling anestrus and infertility in postpartum beef cattle. Journal of Animal Science 68, 799816.CrossRefGoogle ScholarPubMed
Sinclair, K. D., Revilla, R., Roche, J. F., Quintans, G., Sanz, A., Mackey, D. R. & Diskin, M. G. (2002). Ovulation of the first dominant follicle arising after day 21 postpartum in suckling beef cows. Journal of Animal Science 75, 115126.CrossRefGoogle Scholar
Smeaton, D. C., McCall, D. G., Clayton, J. B. & Dow, B. W. (1986). Calving date effects on beef cow productivity. Proceedings of the New Zealand Society of Animal Production 46, 149152.Google Scholar
Stumpf, T. T., Wolfe, M. W., Wolfe, P. L., Day, M. L., Kittok, R. J. & Kinder, J. E. (1992). Weight changes prepartum and presence of bulls postpartum interact to affect duration of postpartum anestrus in cows. Journal of Animal Science 70, 31333137.CrossRefGoogle ScholarPubMed
Sweeney, T., Donovan, A., Karsch, F. J., Roche, J. F. & O'Callaghan, D. (1997). Influence of previous photoperiodic exposure on the reproductive response to a specific photoperiod signal in ewes. Biology of Reproduction 56, 916920.CrossRefGoogle ScholarPubMed
Terqui, M. & Thimonier, J. (1974). Nouvelle méthode radio-immunologique rapide pour l'estimation du niveau de progestérone plasmatique. Application pour le diagnostic précoce de la gestation chez la brebis et la chèvre. Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences, Série D (Sciences Naturelles) 279, 11091112.Google Scholar
Thimonier, J. (2000). Détermination de l'état physiologique des femelles par analyse des niveaux de progestérone. INRA Productions Animales 13, 177183.CrossRefGoogle Scholar
Thornley, J. H. M. & France, J. (2007). Mathematical Models in Agriculture: Quantitative Method for the Plant, Animal and Ecological Sciences, 2nd edn. Wallingford, Oxfordshire, UK: CABI Publishing.CrossRefGoogle Scholar
Villalba, D., Casasús, I., Sanz, A., Bernués, A., Estany, J. & Revilla, R. (2006). Stochastic simulation of mountain beef cattle systems. Agricultural Systems 89, 414434.CrossRefGoogle Scholar
Williams, G. L. (1990). Suckling as a regulator of postpartum rebreeding in cattle: a review. Journal of Animal Science 68, 831852.CrossRefGoogle ScholarPubMed
Wright, I. A., Rhind, S. M., Whyte, T. K. & Smith, A. J. (1992). Effects of body condition at calving and feeding level after calving on LH profiles and the duration of the post-partum anoestrous period in beef cows. Animal Production 55, 4146.Google Scholar
Yavas, Y. & Walton, J. S. (2000). Postpartum acyclicity in suckled beef cows: a review. Theriogenology 54, 2555.CrossRefGoogle ScholarPubMed