Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-08T23:42:35.479Z Has data issue: false hasContentIssue false

Modelling the interplay between nitrogen cycling processes and mitigation options in farming catchments

Published online by Cambridge University Press:  09 June 2015

P. DURAND*
Affiliation:
Inra, UMR 1069, Sol Agro et Hydrosystème Spatialisation, F-35000 Rennes, France Agrocampus Ouest, UMR 1069, Sol Agro et Hydrosystème Spatialisation, F-35000 Rennes, France
P. MOREAU
Affiliation:
Inra, UMR 1069, Sol Agro et Hydrosystème Spatialisation, F-35000 Rennes, France Agrocampus Ouest, UMR 1069, Sol Agro et Hydrosystème Spatialisation, F-35000 Rennes, France
J. SALMON-MONVIOLA
Affiliation:
Inra, UMR 1069, Sol Agro et Hydrosystème Spatialisation, F-35000 Rennes, France Agrocampus Ouest, UMR 1069, Sol Agro et Hydrosystème Spatialisation, F-35000 Rennes, France
L. RUIZ
Affiliation:
Inra, UMR 1069, Sol Agro et Hydrosystème Spatialisation, F-35000 Rennes, France Agrocampus Ouest, UMR 1069, Sol Agro et Hydrosystème Spatialisation, F-35000 Rennes, France
F. VERTES
Affiliation:
Inra, UMR 1069, Sol Agro et Hydrosystème Spatialisation, F-35000 Rennes, France Agrocampus Ouest, UMR 1069, Sol Agro et Hydrosystème Spatialisation, F-35000 Rennes, France
C. GASCUEL-ODOUX
Affiliation:
Inra, UMR 1069, Sol Agro et Hydrosystème Spatialisation, F-35000 Rennes, France Agrocampus Ouest, UMR 1069, Sol Agro et Hydrosystème Spatialisation, F-35000 Rennes, France
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

Quantitative assessment of mitigation measures for nitrogen (N) pollution requires adequate models, good knowledge of catchment functioning and a thorough understanding of agricultural systems and stakeholder constraints. The current paper analyses a set of results from simulations, with two models, of agricultural changes in two catchments in different contexts with different constraints. The results show that reducing N inputs and increasing grassland areas are the most efficient measures, not only because they reduce N fluxes in streams but also because they enhance N use by agriculture and the whole catchment system. Introducing catch crops, hedgerows and riparian buffers are interesting complementary measures but of limited impact when implemented alone. These results are sensitive to the way mitigation measures are translated into model inputs, and their operational implications are discussed.

Type
Nitrogen Workshop Special Issue Paper
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arheimer, B., Lowgren, M., Pers, B. C. & Rosberg, J. (2005). Integrated catchment modeling for nutrient reduction: scenarios showing impacts, potential, and cost of measures. Ambio 34, 513520.CrossRefGoogle ScholarPubMed
Aubert, A. H., Gascuel-Odoux, C., Gruau, G., Akkal, N., Faucheux, M., Fauvel, Y., Grimaldi, C., Hamon, Y., Jaffrézic, A., Lecoz-Boutnik, M., Molénat, J., Petitjean, P., Ruiz, L. & Merot, P. (2013). Solute transport dynamics in small, shallow groundwater-dominated agricultural catchments: insights from a high-frequency, multisolute 10 yr-long monitoring study. Hydrology and Earth System Sciences 17, 13791391.CrossRefGoogle Scholar
Bagoulla, C., Chevassus-Lozza, E., Daniel, K. & Gaigné, C. (2010). Regional production adjustment to import competition: evidence from the French agro-industry. American Journal of Agricultural Economics 92, 10401050.CrossRefGoogle Scholar
Baily, A., Rock, L., Watson, C. J. & Fenton, O. (2011). Spatial and temporal variations in groundwater nitrate at an intensive dairy farm in south-east Ireland: insights from stable isotope data. Agriculture, Ecosystems & Environment 144, 308318.CrossRefGoogle Scholar
Barnes, A. P., Willock, J., Hall, C. & Toma, L. (2009). Farmer perspectives and practices regarding water pollution control programmes in Scotland. Agricultural Water Management 90, 17151722.CrossRefGoogle Scholar
Barnes, A. P., Toma, L., Willock, J. & Hall, C. (2013). Comparing a ‘budge’ to a ‘nudge’: farmer responses to voluntary and compulsory compliance in a water quality management regime. Journal of Rural Studies 32, 448459.CrossRefGoogle Scholar
Beaujouan, V., Durand, P., Ruiz, L., Aurousseau, P. & Cotteret, G. (2002). A hydrological model dedicated to topography-based simulation of nitrogen transfer and transformation: rationale and application to the geomorphology-denitrification relationship. Hydrological Processes 16, 493507.CrossRefGoogle Scholar
Benhamou, C., Salmon-Monviola, J., Durand, P., Grimaldi, C. & Merot, P. (2013). Modeling the interaction between fields and a surrounding hedgerow network and its impact on water and nitrogen flows of a small watershed. Agricultural Water Management 121, 6272.CrossRefGoogle Scholar
Blackstock, K. L., Ingram, J., Burton, R., Brown, K. M. & Slee, B. (2010). Understanding and influencing behaviour change by farmers to improve water quality. Science of the Total Environment 408, 56315638.CrossRefGoogle ScholarPubMed
Blankenberg, A. G. B., Haarstad, K. & Sovik, A. K. (2006). Nitrogen retention in constructed wetland filters treating diffuse agriculture pollution. Desalination 226, 114120.CrossRefGoogle Scholar
Börjeson, L., Höjer, M., Dreborg, K.-H., Ekvall, T. & Finnveden, G. (2006). Scenario types and techniques: towards a user's guide. Futures 38, 723739.CrossRefGoogle Scholar
Brisson, N., Gary, C., Justes, E., Roche, R., Mary, B., Ripoche, D., Zimmer, D., Sierra, J., Bertuzzi, P., Burger, P., Bussière, F., Cabidoche, Y. M., Cellier, P., Debaeke, P., Gaudillère, J. P., Hénault, C., Maraux, F., Seguin, B. & Sinoquet, H. (2003). An overview of the crop model STICS. European Journal of Agronomy 18, 309332.CrossRefGoogle Scholar
Brix, H., Schierup, H. H. & Arias, C. A. (2007). Twenty years experience with constructed wetland systems in Denmark – what did we learn? Water Science and Technology 56, 6368.CrossRefGoogle ScholarPubMed
Buckley, C. (2012). Implementation of the EU Nitrates Directive in the Republic of Ireland – a view from the farm. Ecological Economics 78, 2936.CrossRefGoogle Scholar
Buckley, C. & Carney, P. (2013). The potential to reduce the risk of diffuse pollution from agriculture while improving economic performance at farm level. Environmental Science & Policy 25, 118126.CrossRefGoogle Scholar
Caminiti, J. E. (2004). Catchment modelling – a resource manager's perspective. Environmental Modelling & Software 19, 991997.CrossRefGoogle Scholar
Chambaut, H., Bordenave, R., Durand, R., Fourrié, L. & Laurent, F. (2008). Modelling the nitrogen flows from the dairying area of the Fontaine-du-Theil river catchment basin. Fourrages 193, 3550.Google Scholar
Chaplot, V., Saleh, A., Jaynes, D. B. & Arnold, J. (2004). Predicting water, sediment and NO3-N loads under scenarios of land-use and management practices in a flat watershed. Water, Air and Soil Pollution 154, 271293.CrossRefGoogle Scholar
Cherry, K. A., Shepherd, M., Withers, P. J. A. & Mooney, S. J. (2008). Assessing the effectiveness of actions to mitigate nutrient loss from agriculture: a review of methods. Science of the Total Environment 406, 123.CrossRefGoogle Scholar
Dahl, M., Nilsson, B., Langhoff, J. H. & Refsgaard, J. C. (2007). Review of classification systems and new multi-scale typology of groundwater-surface water interaction. Journal of Hydrology 344, 116.CrossRefGoogle Scholar
Dalgaard, T., Bienkowski, J. F., Bleeker, A., Dragosits, U., Drouet, J. L., Durand, P., Frumau, A., Hutchings, N. J., Kedziora, A., Magliulo, V., Olesen, J. E., Theobald, M. R., Maury, O., Akkal, N. & Cellier, P. (2012). Farm nitrogen balances in six European landscapes as an indicator for nitrogen losses and basis for improved management. Biogeosciences 9, 53035321.CrossRefGoogle Scholar
Durand, P. (2004). Simulating nitrogen budgets in complex farming systems using INCA: calibration and scenario analyses for the Kervidy catchment (W. France). Hydrology and Earth System Sciences 8, 793802.CrossRefGoogle Scholar
Eriksen, J., Askegaard, M. & Kristensen, K. (2004). Nitrate leaching from an organic dairy crop rotation: the effects of manure type, nitrogen input and improved crop rotation. Soil Use and Management 20, 4854.CrossRefGoogle Scholar
Evans, R. (2002). Rural land use in England and Wales and the delivery to the adjacent seas of nitrogen, phosphorus and atrazine. Soil Use and Management 18, 346352.CrossRefGoogle Scholar
Fenton, O., Richards, K. G., Kirwan, L., Khalil, M. I. & Healy, M. G. (2009). Factors affecting nitrate distribution in shallow groundwater under a beef farm in South Eastern Ireland. Journal of Environmental Management 90, 31353146.CrossRefGoogle Scholar
Fenton, O., Healy, M. G., Henry, T., Khalil, M. I., Grant, J., Baily, A. & Richards, K. G. (2011). Exploring the relationship between groundwater geochemical factors and denitrification potentials on a dairy farm in southeast Ireland. Ecological Engineering 37, 13041313.CrossRefGoogle Scholar
Ferrant, S., Oehler, F., Durand, P., Ruiz, L., Salmon-Monviola, J., Justes, E., Dugast, P., Probst, A., Probst, J.-L. & Sanchez-Perez, J.-M. (2011). Understanding nitrogen transfer dynamics in a small agricultural catchment: comparison of a distributed (TNT2) and a semi distributed (SWAT) modeling approaches. Journal of Hydrology 406, 115.CrossRefGoogle Scholar
Ferrant, S., Durand, P., Justes, E., Probst, J.-L. & Sanchez-Perez, J.-M. (2013). Simulating the long term impact of nitrate mitigation scenarios in a pilot study basin. Agricultural Water Management 124, 8596.CrossRefGoogle Scholar
Fisher, J. & Acreman, M. C. (2004). Wetland nutrient removal: a review of the evidence. Hydrology and Earth System Sciences 8, 673685.CrossRefGoogle Scholar
Gascuel-Odoux, C., Aurousseau, P., Durand, P., Ruiz, L. & Molenat, J. (2010). The role of climate on inter-annual variation in stream nitrate fluxes and concentrations. Science of the Total Environment 408, 56575666.CrossRefGoogle ScholarPubMed
Grizzetti, B., Bouraoui, F. & De Marsily, G. (2008). Assessing nitrogen pressures on European surface water. Global Biogeochemical Cycles 22, GB4023. doi:10.1029/2007GB003085.CrossRefGoogle Scholar
Haag, D. & Kaupenjohann, M. (2001). Landscape fate of nitrate fluxes and emissions in Central Europe – a critical review of concepts, data, and models for transport and retention. Agriculture, Ecosystems & Environment 86, 121.CrossRefGoogle Scholar
Healy, M. G., Ibrahim, T. G., Lanigan, G. J., Serrenho, A. J. & Fenton, O. (2012). Nitrate removal rate, efficiency and pollution swapping potential of different organic carbon media in laboratory denitrification bioreactors. Ecological Engineering 40, 198209.CrossRefGoogle Scholar
Hoffmann, C. C., Kronvang, B. & Audet, J. (2011). Evaluation of nutrient retention in four restored Danish riparian wetlands. Hydrobiologia 674, 524.CrossRefGoogle Scholar
Huebsch, M., Horan, B., Blum, P., Richards, K. G., Grant, J. & Fenton, O. (2013). Impact of agronomic practices of an intensive dairy farm on nitrogen concentrations in a karst aquifer in Ireland. Agriculture, Ecosystems & Environment 179, 187199.CrossRefGoogle Scholar
Jakeman, A. J., Letcher, R. A. & Norton, J. P. (2006). Ten iterative steps in development and evaluation of environmental models. Environmental Modelling & Software 21, 602614.CrossRefGoogle Scholar
Johnson, G. D., Myers, W. L. & Patil, G. P. (2001). Predictability of surface water pollution loading in Pennsylvania using watershed-based landscape measurements. Journal of the American Water Resources Association 37, 821835.CrossRefGoogle Scholar
Justes, E., Beaudoin, N., Bertuzzi, P., Charles, R., Dürr, C., Constantin, J., Hermon, C., Joannon, A., le Bas, C., Mary, B., Mignolet, C., Montfort, F., Ruiz, L., Sarthou, J. P., Souchère, V., Tournebize, J., Savini, I. & Réchauchère, O. (2012). Cover crops to reduce nitrate leaching. Effect on water and nitrogen balance and other ecosystem services. Proceedings – International Fertiliser Society 719, 126.Google Scholar
Kay, P., Edwards, A. C. & Foulger, M. (2009). A review of the efficacy of contemporary agricultural stewardship measures for ameliorating water pollution problems of key concern to the UK water industry. Agricultural Systems 99, 6775.CrossRefGoogle Scholar
Kay, P., Grayson, R., Phillips, M., Stanley, K., Dodsworth, A., Hanson, A., Walker, A., Foulger, M., McDonnell, I. & Taylor, S. (2012). The effectiveness of agricultural stewardship for improving water quality at the catchment scale: experiences from an NVZ and ECSFDI watershed. Journal of Hydrology 422–423, 1016.CrossRefGoogle Scholar
Kovacic, D. A., David, M. B., Gentry, L. E., Starks, K. M. & Cooke, R. A. (2000). Effectiveness of constructed wetlands in reducing nitrogen and phosphorus export from agricultural tile drainage. Journal of Environmental Quality 29, 12621274.CrossRefGoogle Scholar
Krugman, P. (1998). What's new about the new economic geography? Oxford Review of Economic Policy 14, 717.CrossRefGoogle Scholar
Leenhardt, D., Therond, O., Cordier, M.-O., Gascuel-Odoux, C., Reynaud, A., Durand, P., Bergez, J.-E., Clavel, L., Masson, V. & Moreau, P. (2012). A generic framework for scenario exercises using models applied to water-resource management. Environmental Modelling & Software 37, 125133.CrossRefGoogle Scholar
Mabon, F., Raimbault, T., Moreau, P., Devienne, S., Delaby, L., Durand, P., Ruiz, L. & Vertes, F. (2009). How to conciliate the technico-economic and the environmental efficiency of farms in a difficult environment: role of the agrarian diagnosis. Fourrages 199, 373388.Google Scholar
Maringanti, C., Chaubey, I. & Popp, J. (2009). Development of a multiobjective optimization tool for the selection and placement of best management practices for nonpoint source pollution control. Water Resources Research 45, W06406, doi:10.1029/2008WR007094.CrossRefGoogle Scholar
Ménesguen, A. (1999). L'utilisation de modèles écologiques dans la lutte contre l'eutrophisation des eaux côtières Françaises. In Pollutions Diffuses: du Bassin Versant au Littoral. Proceedings of a Seminar 23–24 September 1999, Saint-Brieuc, Ploufragran, France (Ed. Merceron, M.), pp. 3148. Actes de Colloques 24. Ploufragran, France: IFREMER.Google Scholar
Ménesguen, A. & Piriou, J. Y. (1995). Nitrogen loadings and macroalgal (Ulva sp.) mass accumulation in Brittany (France). Ophelia 42, 227237.CrossRefGoogle Scholar
Molénat, J., Durand, P., Gascuel-Odoux, C., Davy, P. & Gruau, G. (2002). Mechanisms of nitrate transfer from soil to stream in an agricultural watershed of French Brittany. Water, Air and Soil Pollution 133, 161183.CrossRefGoogle Scholar
Molénat, J., Gascuel-Odoux, C., Aquilina, L. & Ruiz, L. (2013). Use of gaseous tracers (CFCs and SF6) and transit-time distribution spectrum to validate a shallow groundwater transport model. Journal of Hydrology 480, 19.CrossRefGoogle Scholar
Morari, F., Lugato, E., Polese, R., Berti, A. & Giardini, L. (2012). Nitrate concentrations in groundwater under contrasting agricultural management practices in the low plains of Italy. Agriculture, Ecosystems & Environment 147, 4756.CrossRefGoogle Scholar
Moreau, P., Ruiz, L., Mabon, F., Raimbault, T., Durand, P., Delaby, L., Devienne, S. & Vertes, F. (2012 a). Reconciling technical, economic and environmental efficiency of farming systems in vulnerable areas. Agriculture, Ecosystems & Environment 147, 8999.CrossRefGoogle Scholar
Moreau, P., Ruiz, L., Raimbault, T., Vertès, F., Cordier, M. O., Gascuel-Odoux, C., Masson, V., Salmon-Monviola, J. & Durand, P. (2012 b). Modeling the potential benefits of catch-crop introduction in fodder crop rotations in a Western Europe landscape. Science of the Total Environment 437, 276284.CrossRefGoogle Scholar
Moreau, P., Ruiz, L., Vertès, F., Baratte, C., Delaby, L., Faverdin, P., Gascuel-Odoux, C., Piquemal, B., Ramat, E., Salmon-Monviola, J. & Durand, P. (2013a). CASIMOD'N: an agro-hydrological distributed model of catchment-scale nitrogen dynamics integrating farming system decisions. Agricultural Systems 118, 4151.CrossRefGoogle Scholar
Moreau, P., Viaud, V., Parnaudeau, V., Salmon-Monviola, J. & Durand, P. (2013 b). An approach for global sensitivity analysis of a complex environmental model to spatial inputs and parameters: a case study of an agro-hydrological model. Environmental Modelling & Software 47, 7487.CrossRefGoogle Scholar
Oehler, F., Bordenave, P. & Durand, P. (2007). Variations of denitrification in a farming catchment area. Agriculture, Ecosystems & Environment 120, 313324.CrossRefGoogle Scholar
Oehler, F., Durand, P., Bordenave, P., Saadi, Z. & Salmon-Monviola, J. (2009). Modelling denitrification at the catchment scale. Science of the Total Environment 407, 17261737.CrossRefGoogle ScholarPubMed
Oenema, O., Witzke, H. P., Klimont, Z., Lesschen, J. P. & Velthof, G. L. (2009). Integrated assessment of promising measures to decrease nitrogen losses from agriculture in EU-27. Agriculture, Ecosystems & Environment 133, 280288.CrossRefGoogle Scholar
Payraudeau, S., Van Der Werf, H. M. G. & Vertès, F. (2007). Analysis of the uncertainty associated with the estimation of nitrogen losses from farming systems. Agricultural Systems 94, 416430.CrossRefGoogle Scholar
Premrov, A., Coxon, C. E., Hackett, R., Kirwan, L. & Richards, K. G. (2014). Effects of over-winter green cover on soil solution nitrate concentrations beneath tillage land. Science of the Total Environment 470–471, 967974.CrossRefGoogle ScholarPubMed
Ruiz, L., Abiven, S., Martin, C., Durand, P., Beaujouan, V. & Molénat, J. (2002). Effect on nitrate concentration in stream water of agricultural practices in small catchments in Brittany: II. Temporal variations and mixing processes. Hydrology and Earth System Sciences 6, 507514.CrossRefGoogle Scholar
Salmon-Monviola, J., Durand, P., Ferchaud, F., Oehler, F. & Sorel, L. (2012). Modelling spatial dynamics of cropping systems to assess agricultural practices at the catchment scale. Computers and Electronics in Agriculture 81, 113.CrossRefGoogle Scholar
Salmon-Monviola, J., Moreau, P., Benhamou, C., Durand, P., Merot, P., Oehler, F. & Gascuel-Odoux, C. (2013). Effect of climate change and increased atmospheric CO2 on hydrological and nitrogen cycling in an intensive agricultural headwater catchment in western France. Climatic Change 120, 433447.CrossRefGoogle Scholar
Schoumans, O. F., Chardon, W. J., Bechmann, M., Gascuel-Odoux, C., Hofman, G., Kronvang, B., Litaor, I., Lo Porto, A., Newell, P. & Rubaek, G. H. (2011). Mitigation Options for Reducing Nutrient Emissions from Agriculture: a Study Amongst European Member States of Cost action 869. Wageningen, The Netherlands: Alterra.Google Scholar
Shepherd, M. A. & Webb, J. (1999). Effects of overwinter cover on nitrate loss and drainage from a sandy soil: consequences for water management? Soil Use and Management 15, 109116.CrossRefGoogle Scholar
Tanner, C. C., Nguyen, M. L. & Sukias, J. P. S. (2005). Nutrient removal by a constructed wetland treating subsurface drainage from grazed dairy pasture. Agriculture, Ecosystems & Environment 105, 145162.CrossRefGoogle Scholar
Vaché, K. B., Eilers, J. M. & Santelmann, M. V. (2002). Water quality modeling of alternative agricultural scenarios in the US corn belt. Journal of the American Water Resources Association 38, 773787.CrossRefGoogle Scholar
Velthof, G. L., Lesschen, J. P., Webb, J., Pietrzak, S., Miatkowski, Z., Pinto, M., Kros, J. & Oenema, O. (2014). The impact of the Nitrates Directive on nitrogen emissions from agriculture in the EU-27 during 2000–2008. Science of the Total Environment 468–469, 12251233.CrossRefGoogle ScholarPubMed
Verhoeven, J. T. A. (2014). Wetlands in Europe: perspectives for restoration of a lost paradise. Ecological Engineering 66, 69.CrossRefGoogle Scholar
Vertés, F., Hatch, D., Velthof, G., Taube, F., Laurent, F., Loiseau, P. & Recous, S. (2007). Short-term and cumulative effects of grassland cultivation on nitrogen and carbon cycling in ley-arable rotations. In Permanent and Temporary Grassland: Plant, Environment and Economy. Proceedings of the 14th Symposium (Eds De Vliegher, A. & Carlier, L.), pp. 227–246. Grassland Science in Europe vol. 12. Zurich, Switzerland: EGF.Google Scholar
Viaud, V., Durand, P., Merot, P., Sauboua, E. & Saadi, Z. (2005). Modeling the impact of the spatial structure of a hedge network on the hydrology of a small catchment in a temperate climate. Agricultural Water Management 74, 135163.CrossRefGoogle Scholar
Worrall, F., Spencer, E. & Burt, T. P. (2009). The effectiveness of nitrate vulnerable zones for limiting surface water nitrate concentrations. Journal of Hydrology 370, 2128.CrossRefGoogle Scholar
Yang, Y. S. & Wang, L. (2010). A review of modelling tools for implementation of the EU Water Framework Directive in handling diffuse water pollution. Water Resources Management 24, 18191843.CrossRefGoogle Scholar