Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-23T03:05:35.632Z Has data issue: false hasContentIssue false

Management of Aries and Aruana Guinea grass cultivars under rotational stocking based on canopy light interception

Published online by Cambridge University Press:  30 September 2021

F. P. Campos*
Affiliation:
Institute of Zootechny, IZ/APTA/SAA, Nova Odessa, SP13380-011, Brazil
P. Sarmento
Affiliation:
Institute of Zootechny, IZ/APTA/SAA, Nova Odessa, SP13380-011, Brazil
W. T. Mattos
Affiliation:
Institute of Zootechny, IZ/APTA/SAA, Nova Odessa, SP13380-011, Brazil
L. Gerdes
Affiliation:
Institute of Zootechny, IZ/APTA/SAA, Nova Odessa, SP13380-011, Brazil
R. A. Carnevalli
Affiliation:
National Dairy Cow Research Center/EMBRAPA, Juiz de Fora, MG36038-330, Brazil
C. G. Lima
Affiliation:
Department of Basic Sciences, USP – University of São Paulo, ZAB/FZEA, Pirassununga, SP, 13635.900, Brazil
*
Author for correspondence: F. P. Campos, E-mail: [email protected]

Abstract

Efforts were made to obtain forage cultivars with high production capacity and quality and to determine the ideal time to start animal grazing, respecting the morphological characteristics of the grasses. For this purpose, the nutritional value, digestibility and characteristics of the forage canopy of Aries and Aruana (Megathyrsus maximus (Jacq.) or Panicum maximum) cultivars kept under rotational stocking with sheep were evaluated and the management height was determined based on 95% light interception (LI). The experiment was evaluated with repeated measures over time (grazing cycles by season, in 2 years) with a treatment factor (grass cultivar) in a completely randomized block design with eight replicates, using 800 m2 paddocks. The height of the forage canopy before grazing (pre-grazing) determined by 95% LI stabilized around 29 cm. The highest proportion of Aruana leaf blades was observed in winter. Aries grass presented similar leaf blade percentages in summer, autumn and spring. Similar forage accumulation (FA) was observed for both cultivars, decreasing in spring, autumn and winter. Higher crude protein and in vitro dry matter digestibility (IVDMD) were seen in Aries grass, while Aruana grass presented higher neutral and acid detergent fibre and cellulose and lower IVDMD. The nutritional quality of the grasses was maintained throughout the year. The height of the forage canopy of Aries and Aruana recommended for entry into the paddock is 29 cm to maintain nutritional quality. The successful management strategy adopted for grasses combined with nitrogen fertilization provided a greater forage mass quality.

Type
Crops and Soils Research Paper
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

AOAC (1995) Association of official analytical chemists. Micro Kjeldahl method. In Cunniff, AP (ed). Official Methods of Analysis of AOAC International. Arlington, Cap. 12, p. 7.Google Scholar
Balsalobre, MAA, Corsi, M, Santos, PM, Vieira, I and Cárdenas, RR (2003) Composição química e fracionamento do nitrogênio e dos carboidratos do capim Tanzânia irrigado sob três níveis de resíduo pós-pastejo. Revista Brasileira de Zootecnia 32, 519528. (Eng. Abstr.).CrossRefGoogle Scholar
Barbosa, RA, Nascimento, D JR, Euclides, VPB, Zimmer, AH and Torres Junior, RAA (2007) Capim-tanzânia submetido a combinações entre intensidade e freqüência de pastejo. Pesquisa Agropecuária Brasileira 42, 329340. (Eng. Abstr.).CrossRefGoogle Scholar
Benedetti, MM, Curi, N, Sparovek, G, Amaury de Carvalho Filho, A and Silva, SHG (2019) Updated Brazilian's Georeferenced Soil Database – an Improvement for International Scientific Information Exchanging. Available at https://ainfo.cnptia.embrapa.br/digital/bitstream/item/53532/1/16-MunizBenedetti.pdf (Accessed 30 January 2019).Google Scholar
Brâncio, PA, Euclides, VPB, Nascimento, D Jr, Fonseca, DM, Almeida, RG, Macedo, MCM and Barbosa, RA (2003 a) Avaliação de três cultivares de Panicum maximum Jacq. sob pastejo: comportamento ingestivo de bovinos. Revista Brasileira de Zootecnia 32, 10451053. (Eng. Abstr.).CrossRefGoogle Scholar
Brâncio, PA, Nascimento, D Jr, Euclides, VPB, Fonseca, DM, Almeida, RG, Macedo, MCM and Barbosa, RA (2003 b) Avaliação de três cultivares de Panicum maximum Jacq. sob pastejo: composição da dieta, consumo de matéria seca e ganho de peso animal. Revista Brasileira de Zootecnia 32, 10371044. (Eng. Abstr.).CrossRefGoogle Scholar
Brown, RH and Blaser, RE (1968) Leaf areas index in pasture growth. Herbage Abstract 38, 19.Google Scholar
Campos, FP, Lanna, DPD, Bose, MLV, Boin, C and Sarmento, P (2002) Degradabilidade do capim-elefante em diferentes estágios de maturidade avaliada pelo método in vitro/gás. Scientia Agricola 59, 217225. (Eng. Abstr.).CrossRefGoogle Scholar
Campos, FP, Sarmento, P, Nussio, LG, Lugão, SMB, Lima, CG and Daniel, JLP (2013) Fiber monosaccharides and digestibility of Milenio grass under N fertilization. Animal Feed Science and Technology 183, 1721.CrossRefGoogle Scholar
Campos, FP, Nicácio, DRO, Sarmento, P, Cruz, MCP, Santos, TM, Faria, AFG, Ferreira, ME, Conceição, MRG and Lima, CG (2016) Chemical composition and in vitro ruminal digestibility of hand-plucked samples of Xaraes palisade grass fertilized with incremental level of nitrogen. Animal Feed Science and Technology 215, 0112.CrossRefGoogle Scholar
Carnevalli, RA, Da Silva, SC, Bueno, AAO, Uebele, MC, Bueno, FO, Hodgson, J, Silva, GN and Morais, JPG (2006) Herbage production and grazing losses in Panicum maximum cv. Mombaça under four grazing managements. Tropical Grasslands 40, 165176.Google Scholar
Carvalho, DD and Giacomini, AA (2005) Morphogenetic characteristics of Panicum maximum cv. Aruana subjected to five defoliation stubble heights and two frequencies. In 20o International Grassland Congress, 2005, Dublin. 20o. International Grassland Congress, pp. 204204.Google Scholar
CEPAGRI – Centro de Pesquisa Metereológica e Climáticas Aplicadas a Agricultura – UNICAMP/Universidade de Campinas, 2017, Campinas, SP, Brazil. Available online from: http://www.cpa.unicamp.br/outras-informacoes/clima_muni_379.html (Accessed 26 April 2017).Google Scholar
CIIAGRO/IAC, (2007) Centro Integrado de Informações Agrometereológicas – Instituto Agronômico de Campinas. Brunini O, Júnior MJP, Sakai E, et al. (eds) Campinas, SP, Brazil. Available at http://www.ciiagro.sp.gov.br/ciiagroonline/.Google Scholar
Coelho, JJ, Dubeux, JCB JR, Santos, ERS, Leão Neto, JMC, Cunha, MV, Santos, MVF, Mello, ACL and Lira, MA (2014) Canopy height and its relationship with leaf area index and light interception in tropical grasses. Tropical Grasslands – Forrajes Tropicales 2, 3132.CrossRefGoogle Scholar
Costa, RLD, Bueno, MS, Veríssimo, CJ, Cunha, EA, Santos, LE, Oliveira, SM, Spósito Filho, E and Otsuk, IP (2007) Performance and nematode infection of ewe lambs on intensive rotational grazing with two different cultivars of Panicum maximum. Tropical Animal Health Production 39, 255263.CrossRefGoogle ScholarPubMed
Costa, NL, Vicente Gianluppi, V, Bendahan, AB, Braga, RM and Mattos, PSR (2009) Formação e Manejo de Pastagens em Roraima. Costa, NL (ed) Boa Vista, Roraima, Brazil. 28p. il. (Embrapa Roraima. Documentos, 16). Available at https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/696613/1/doc162009pastagensnewton.pdf.Google Scholar
Cunha, EA, Santos, LE, Roda, DS, Bueno, MS, Pozzi, CR and Otsuk, IP (1997) Efeito do sistema de manejo sobre o comportamento em pastejo, desempenho ponderal e infestação parasitária em ovinos Suffolk. Pesquisa Agropecuária Brasileira 17, 105111. (Eng. Abstr.).CrossRefGoogle Scholar
Da Silva, SC, Bueno, AAO, Carnevalli, RA, Silva, GP and Chiavegato, MB (2020) Nutritive value and morphological characteristics of Mombaça grass managed with different rotational grazing strategies. The Journal of Agricultural Science 157, 17. https://doi.org/10.1017/S0021859620000052.Google Scholar
Dove, H (1996) The ruminant, the rumen and the pasture resource: nutrient interaction in the grazing animal. Chapter 8. In Hodson, J and Illius, AW (eds). The Ecology and Management of Grazing Systems. Wallingford, UK: CAB International, pp. 219246.Google Scholar
EMBRAPA (2006) Empresa Brasileira de Pesquisa Agropecuária, Centro Nacional de Pesquisa de Solos. Sistema brasileiro de classificação de solos. 2.ed. Brasília, Embrapa Produção de informação, 2006. 306p.Google Scholar
Emerenciano Neto, JV, Difante, GS, Aguiar, EM, Fernandes, LS, Oliveira, HCB and Silva, MGT (2014) Performance of meat sheep, chemical composition and structure of tropical pasture grasses managed under intermittent capacity. Bioscience Journal 30, 834842.Google Scholar
Euclides, VPB, Lopes, FC, Nascimento, D Jr, Da Silva, SC, Difante, GS and Barbosa, RA (2015) Steer performance on Panicum maximum (cv. Mombaça) pastures under two grazing intensities. Animal Production Science 56, 18491856.CrossRefGoogle Scholar
Fagundes, JL, Silva, SC, Pedreira, CGS, Carnevalli, RA, Carvalho, CAB, Sbrissia, AF and Pinto, LFM (2001) Índice de área foliar, coeficiente de extinsão luminosa e acúmulo de forragem em pastagens de Cynodon spp. sob lotação contínua. Pesquisa Agropecuária Brasileira 36, 187195. (Eng. Abstr.).CrossRefGoogle Scholar
Fernandes, FD, Ramos, AKB, Jank, L, Carvalho, MA, Martha, GB JR and Braga, GJ (2014) Forage yield and nutritive value of Panicum maximum genotypes in the Brazilian savannah. Scientia Agricola 71, 2329.CrossRefGoogle Scholar
Giacomini, AA, Da Silva, SC, Sarmento, DOL, Zeferino, CV, Trindade, JK, Souza, SJ Jr, Guarda, Vdel'A, Sbrissia, AF and Nascimento, D Jr (2009) Components of the leaf area index of Marandu Palisadegrass swards subjected to strategies of intermittent stocking. Scientia Agricola 66, 721732.CrossRefGoogle Scholar
Giacomini, AA, Batista, K, Colozza, MT, Mattos, WT, Gerdes, L, Otsuk, IP and Werner, JC (2014 a). Tiller population stability of Aruana Guinea grass subjected to different cutting severities and fertilized with nitrogen. Tropical Grasslands – Forrajes Tropicales 2, 5556.CrossRefGoogle Scholar
Giacomini, AA, Batista, K, Colozza, MT, Gerdes, L, Mattos, WT, Otsuk, IP, Gimenes, FM and Premazzi, LP (2014 b) Production of Aruana Guinea grass subjected to different cutting severities and nitrogen fertilization. Tropical Grasslands – Forrajes Tropicales 2, 5354.CrossRefGoogle Scholar
Giacomini, A, Batista, K, Gerdes, L, Mattos, WT and Otsuk, IP (2015) Nitrogen fertilization contributes to the flexible use of defoliation severity in the management of Aruana Guinea grass. International Journal Plant and Soil Science 7, 136146.CrossRefGoogle Scholar
Hodgson, J (1990) Herbage Production and Utilization: Grazing Management – Science Into Practice. New York: John Wiley, pp. 3854.Google Scholar
Hughes, M, Mlambo, V, Jennings, PGA and Lallo, CHO (2014) The accuracy of predicting in vitro ruminal organic matter digestibility from chemical components of tropical pastures varies with season and harvesting method. Tropical Agriculture 91, 131146.Google Scholar
Humphreys, LR (1966) Subtropical grass growth: II effects of variation in leaf area index in the field. Queensland Journal of Agricultural and Animal Sciences 23, 358388.Google Scholar
Humphreys, LR (1991) Effects of defoliation on the growth of tropical pastures. In Humphreys, LR (eds), Tropical Pasture Utilization. Cambridge: Cambridge University Press. Chap.4, pp. 4665.CrossRefGoogle Scholar
Korte, CJ, Watkin, BR and Harris, W (1982) Use of residual leaf area index and light interception as criteria for spring-grazing management of a ryegrass-dominant pasture. New Zealand Journal of Agricultural Research 25, 309319.CrossRefGoogle Scholar
Larch, W (1994) Ökophysiologie der Pflanzer. Ed. Ulmer GmbH and Co. Stuttgart, Germany, Original.Google Scholar
Larch, W (2004) Ecofisiologia vegetal. Ed. Rima Artes e Textos, São Carlos, SP, Brazil, 531p.Google Scholar
Lemaire, G and Chapman, D (1996) Tissue fluxes in grazing plant communities. In Hodgson, J and Illius, AW (eds), The Ecology and Management Grazing Systems. Wallingford: CAB International, pp. 336.Google Scholar
Lima, DM, Abdalla Filho, AL, Lima, PMT, Sakita, GZ, Silva, TPD, McManus, C, Abdalla, AL and Louvandini, H (2018) Morphological characteristics, nutritive quality, and methane production of tropical grasses in Brazil. Pesquisa Agropecuária Brasileira 53, 323331.CrossRefGoogle Scholar
Littell, RC, Pendergast, J and Natarajan, R (2000) Modelling covariance structures in the analysis of repeated measures data. Statistic in Medicine 19, 17931819.3.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Mattos, WT, Werner, JC, Colozza, MT, Gerdes, L, Santos, LE and Giacomini, AA (2008) Avaliação de dois cultivares de Panicum maximum Jacq. submetidos a doses de nitrogênio em lotação rotacionada com ovinos. Boletim da Indústria Animal 65, 289302. (Eng. Abst.).Google Scholar
Moreira, SM, Costa, PT, Fernandes, TA, Farias, GD, Faria, PO, Silveira, RF, Gonçalves, BP, Costa, OD, Silveira, IB and Pedroso, CE (2018) Comportamento ingestivo de ovinos em gramíneas tropicais. Archivos de Zootecnia 67, 292298. (Eng. Abst.).CrossRefGoogle Scholar
Mott, GO and Lucas, HL (1952) The design. Conduct and interpretation of grazing trials on cultivate and improved pastures. In International Grassland Congress, 6, 1952, Pasadena. Proceedings Pasadena… Pennsylvania: State College Press, pp. 13801385.Google Scholar
Pedreira, BC, Pedreira, CGS and Silva, CS (2007) Estrutura do dossel e acúmulo de forragem de Brachiaria brizantha cultivar Xaraés em resposta a estratégias de pastejo. Pesquisa Agropecuária Brasileira 42, 281287. (Eng. Abst.)CrossRefGoogle Scholar
Pedreira, CGS, Silva, VJ, Guimarães, MS, Pequeno, DNL and Tonato, F (2018) Fixed versus variable rest period effects on herbage accumulation and canopy structure of grazed ‘Tifton 85’ and ‘Jiggs’ Bermuda grass. Pesquisa Agropecuária Brasileira 53, 113120.CrossRefGoogle Scholar
Pegoraro, EJ, Poli, CHEC, Carvalho, PCF, Gomes, MJTM and Ficher, V (2008) Manejo da pastagem de azevém, contaminação larval no pasto e infecção parasitária em ovinos. Pesquisa Agropecuária Brasileira 43, 13971403. (Eng. Abstr.).CrossRefGoogle Scholar
Pequeno, DNL, Pedreira, CGS, Sollenberger, LE, Faria, AFG and Silva, L (2015) Forage accumulation and nutritive value of Brachiariagrass and Tifton 85 Bermudagrass as affected by harvest frequency and irrigation. Agronomy Journal 107, 17411749.CrossRefGoogle Scholar
Robbins, KR, Saxton, AM and Southern, LL (2006) Estimation of nutrient requirements using broken-line regression analysis. Journal of Animal Science 84(E. Suppl.): E155E165.CrossRefGoogle ScholarPubMed
Robertson, JB and Van Soest, PJ (1981) The detergent system of analysis. In James, WPT and Theander, O (eds) The Analysis of Dietary Fiber in Food. Marcel Dekker Inc, New York, USA, pp. 123158.Google Scholar
SAS Institute Inc. (2003) SAS/STAT. User's Guide, Version 9.4. Cary, NC, USA: SAS Institute.Google Scholar
SAS procedure (2019) The NLIN procedure – Segmented model – Example 60.1 Segmented Model- SAS/STAT(R) 9.2 User's Guide, Second Edition. https://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.htm#statug_nlin_sect033.htm (Accessed 08/02/2019).Google Scholar
Sheehy, JE and Cooper, JP (1973) Light interception, photosynthetic activity, and crop growth rate in canopies of six temperate forage. Journal of Applied Ecology 10, 239250.CrossRefGoogle Scholar
Silva, EA, Silva, WJ, Barreto, AC, Junior, ABO, Paes, JMV, Ruas, JRM and Queiros, DS (2012) Chemical composition and photosynthetically active radiation of forage grasses under irrigation. Revista Brasileira de Zootecnia 41, 583591.CrossRefGoogle Scholar
Silva, VJ, Pedreira, CGS, Sollenberger, LE, Carvalho, MSS, Tonato, F and Basto, DC (2015) Seasonal herbage accumulation and nutritive value of irrigated ‘Tifton 85’, Jiggs, and Vaquero Bermuda grasses in response to harvest frequency. Crop Science 55, 28862894.CrossRefGoogle Scholar
Sinclair, TR and Seligman, NG (1995) Global environment change and simulated forage quality of wheat. I. Nonstressed conditions. Field Crops Research, 40, 1927.CrossRefGoogle Scholar
Stobbs, TH (1975) A comparison of Zulu sorghum, Bulrush millet and White panicum in terms of yield, forage quality and milk production. Australian Journal of Experimental Agriculture and Animal Husbandry 15, 211218.CrossRefGoogle Scholar
Tilley, JMA and Terry RA (1963) A two-stage technique for the in vitro digestion of forage crops. Journal of the British Grassland Society 18, 104111.CrossRefGoogle Scholar
van Raij, B, Quaggio, JA, Cantarella, H, Ferreira, ME, Lopes, AS and Bataglia, OC (1987) Análise química do solo para fins de fertilidade. Campinas, SP, Brasil: Fundação Cargil. 170p.Google Scholar
Van Soest, PJ (1994) Nutritional Ecology of the Ruminant, 2nd Edn, Ithaca: Cornell Press/Constock Publish, 476p.CrossRefGoogle Scholar
Van Soest, PJ, Robertson, JB and Lewis, BA (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74, 35833597.CrossRefGoogle ScholarPubMed
Vilela, H (2018) Série Gramíneas Tropicais – Gênero Panicum (Panicum maximum Jacq – Aries Capim). Available at http://www.agronomia.com.br/conteudo/artigos/ artigos_gramineas_ tropicais_panicum.htm (Acessed, 16/08/2018).Google Scholar
Vlassoff, A (1982) Biology and population dynamics of the free-living stages of gastrointestinal nematodes of sheep. In Ross, AD (ed.), Control of Internal Parasites of Sheep, Lincoln: Lincoln College, pp. 1120.Google Scholar
Werner, JC, Paulino, VT, Cantarella, H, Andrade, NO and Quaggio, JA (1996) Forrageiras. In van Raij, B, Silva, NM and Bataglia, OC (eds), Recomendações de adubações e calagem. Campinas, São Paulo, Brazil, Instituto Agronômico de Campinas, IAC, pp. 263273. (IAC. Boletim 100).Google Scholar
Wiles, PG, Gray, IK and Kissling, RC (1998) Routine analysis of protein by Kjeldahl and Dumas methods: review and interlaboratory study using dairy products. Journal AOAC International 81, 620632.CrossRefGoogle ScholarPubMed
Wilman, D, Mtengeti, EJ and Mosely, G (1996) Physical structure of twelve forage species in relation to rate of intake by sheep. The Journal of Agricultural Science 126, 277285.CrossRefGoogle Scholar
Zanini, GD, Santos, GT and Sbrissia, AF (2012) Frequencies and intensities of defoliation in Aruana Guinea grass swards: accumulation and morphological composition of forage. Revista Brasileira de Zootecnia 41, 905913.CrossRefGoogle Scholar