Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-03T18:36:39.321Z Has data issue: false hasContentIssue false

The magnesium of bone mineral

Published online by Cambridge University Press:  27 March 2009

T. G. Taylor
Affiliation:
Department of Physiological Chemistry, The University, Reading

Extract

1. Fractionation experiments have been described in which powdered bone materials were extracted with dilute acids using three different techniques. Ethylene diamine tetracetic acid (EDTA) was also used in one series of experiments.

2. The results suggested that the magnesium of bone is present in two main forms, one relatively soluble and the other relatively insoluble in dilute acids.

3. It appeared that a large proportion (at least 70%) of the total bone magnesium was located on the surfaces of the bone crystals either as Mg2+ or MgOH+ ions adsorbed at the primary cation adsorbing centres (the surface phosphate ions of the apatite crystals) or as Mg2+ ions replacing surface Ca2+ ions of the crystal lattice.

4. Evidence that magnesium carbonate does not occur in significant amounts in bone salt was obtained.

5. These results were discussed in relation to the hypomagnesaemia of lactating cows.

6. The carbon dioxide of bone also appeared to be present in two main forms, one relatively soluble and the other relatively insoluble in dilute acids.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1959

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allcroft, W. M. (1947). Vet. J. 103, 2.Google Scholar
Balch, C. C., Head, M. J., Line, C., Rook, J. A. F. & Rowland, S. J. (1956). Proc. Nutr. Soc. 15, x.Google Scholar
Blaxter, K. L. & McGill, R. F. (1956). Vet. Rev. Annot. 2, 35.Google Scholar
Blaxter, K. L. & Rook, J. A. F. (1954). J. Comp. Path, 64, 176.CrossRefGoogle Scholar
Blaxter, K. L., Rook, J. A. F. & MacDonald, A. M. (1954). J. Comp. Path. 64, 157.Google Scholar
Blaxter, K. L. & Sharman, G. A. M. (1955). Vet. Rec. 67, 108.Google Scholar
Boda, J. M. (1956). J. Dairy Sci. 39, 66.CrossRefGoogle Scholar
Boda, J. M. & Cole, H. H. (1954). J. Dairy Sci. 37, 360.CrossRefGoogle Scholar
Buchanan, D. L. & Nakao, A. (1952). J. Biol. Chem. 198, 245.CrossRefGoogle Scholar
Cartier, P. (1948). Bull. Soc. Chim. biol., Paris, 30, 73.Google Scholar
Cunningham, I. J. (1936). N.Z. J. Sci. Tech. 18, 419.Google Scholar
Dallemagne, M. J. (1942). Acta biol. Belg. 2, 298.Google Scholar
Dallemagne, M. J. & Melon, J. (1950). Arch. int. Physiol. 58, 188.Google Scholar
Duckworth, J., Godden, W. & Warnock, G. M. (1940). Biochem. J. 34, 97.CrossRefGoogle Scholar
Gruner, J. W., McConnell, D. & Armstrong, W. D. (1937). J. Biol. Chem. 121, 771.CrossRefGoogle Scholar
Hendricks, S. B. (1952). Trans. Macy Conference on Metabolic Interrelations, 4, 185.Google Scholar
Hendricks, S. B. & Hill, W. L. (1950). Proc. Nat. Acad. Sci., Wash., 36, 731.CrossRefGoogle Scholar
Logan, M. A. & Taylor, H. L. (1938). J. Biol. Chem. 125, 391.Google Scholar
McConnell, D. (1952). Trans. Macy Conference on Metabolic Interrelations, 4, 169.Google Scholar
Neuman, W. F. & Neuman, M. W. (1953). Chem. Rev. 53, 1.CrossRefGoogle Scholar
Romo, L. A. (1954). J. Amer. Chem. Soc. 76, 3924.CrossRefGoogle Scholar
Smith, R. H. (1957). Biochem. J. 67, 472.CrossRefGoogle Scholar
Taylor, T. G. & Moore, J. H. (1954). Brit. J. Nutr. 8, 112.CrossRefGoogle Scholar
Taylor, T. G. & Moore, J. H. (1956). Brit. J. Nutr. 10, 250.Google Scholar
Tinsley, J., Taylor, T. G. & Moore, J. H. (1951). Analyst, 76, 300.CrossRefGoogle Scholar
Williams, J. B. & Irvine, J. W. (1954). Science, 119, 771.Google Scholar
Underwood, A. L., Toribara, T. Y. & Neuman, W. F. (1955). J. Amer. Chem. Soc. 77, 317.CrossRefGoogle Scholar
Zetterstrom, R. (1952). Biochem. Biophys. Acta, 8, 283.CrossRefGoogle Scholar