Hostname: page-component-669899f699-tpknm Total loading time: 0 Render date: 2025-04-28T01:21:04.356Z Has data issue: false hasContentIssue false

Inter-row cover crops influencing the development of conilon coffee

Published online by Cambridge University Press:  06 November 2024

Gustavo Soares de Souza*
Affiliation:
Federal Institute of Espírito Santo (Ifes), Campus Itapina, 29717000, Colatina, Brazil
Luis Carlos Loose Coelho
Affiliation:
Federal Institute of Espírito Santo (Ifes), Campus Itapina, 29717000, Colatina, Brazil
Gildásio Ribeiro Sarnaglia
Affiliation:
Federal Institute of Espírito Santo (Ifes), Campus Itapina, 29717000, Colatina, Brazil
Jhonathan Elias
Affiliation:
Federal Institute of Espírito Santo (Ifes), Campus Itapina, 29717000, Colatina, Brazil
Irany Rodrigues Pretti
Affiliation:
Federal Institute of Espírito Santo (Ifes), Campus Itapina, 29717000, Colatina, Brazil
Luciene Lignani Bitencourt
Affiliation:
Federal Institute of Espírito Santo (Ifes), Campus Itapina, 29717000, Colatina, Brazil
Lucas Louzada Pereira
Affiliation:
Ifes, Campus Venda Nova do Imigrante, 29375000, Venda Nova do Imigrante, Brazil
Evandro Chaves de Oliveira
Affiliation:
Federal Institute of Espírito Santo (Ifes), Campus Itapina, 29717000, Colatina, Brazil
Robson Ferreira de Almeida
Affiliation:
Federal Institute of Espírito Santo (Ifes), Campus Itapina, 29717000, Colatina, Brazil
Sávio da Silva Berilli
Affiliation:
Ifes, Campus Alegre, 29500000, Alegre, Brazil
*
Corresponding author: Gustavo Soares de Souza; Email: [email protected]

Abstract

The use of forage as a cover crop is an alternative for the sustainable management of conilon coffee (Coffea canephora Pierre ex Froehner) crops. The objective of this study was to evaluate the herbage accumulation and nutritive value of forages used as cover crops and their effect on the productivity and physiology of conilon coffee plants. The inter-row management assessed were 1- Congo grass [Urochloa ruziziensis (R. Germ. & C.M. Evrard) Crins], 2- Mombaça guineagrass [Megathyrsus maximus (Jacq.) B.K. Simon & S.W.L. Jacobs], 3- Marandu palisadegrass [Urochloa brizantha (Hochst. ex A.Rich.) R.D.Webster], 4- weeds, 5- weeding and herbicide application. The experiment was conducted in 2020 and 2021 using a randomized block design (split-plot) with four replications and a plot size of 24 m2. Herbage accumulation of Congo grass, Mombaça guineagrass and Marandu palisadegrass (1.12 to 3.81 t/ha) were higher than weeds (0.18 to 1.95 t/ha) in seven periods evaluated. Mombaça guineagrass had the highest average herbage accumulation (1.47 to 3.81 t/ha). The forage cover crops did not differ among themselves for dry matter concentration, crude protein and C:N ratio in three periods evaluated. The inter-rows management with cover crops did not reduce productivity, grain/fruit ratio, grain size, vegetative vigour and physiology of the coffee plants compared to the management with weeding and herbicide in 2021. In 2022, they stagnated or reduced productivity by up to 49%, with changes in plant physiology. Adjustments in the management of cover crops are needed for the development of competitive and sustainable coffee crops.

Type
Crops and Soils Research Paper
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abdallah, FB, Philippe, W and Goffart, JP (2018) Comparison of optical indicators for potato crop nitrogen status assessment including novel approaches based on leaf fluorescence and flavonoid content. Journal of Plant Nutrition 41, 27052728.CrossRefGoogle Scholar
Agati, G, D'Onofrio, C, Ducci, E, Cuzzola, A, Remorini, D, Tuccio, L, Lazzini, F and Mattii, G (2013) Potential of a multiparametric optical sensor for determining in situ the maturity components of red and white vitis vinifera wine grapes. Journal of Agricultural and Food Chemistry 61, 1221112218.CrossRefGoogle ScholarPubMed
Alvares, CA, Stape, JL, Sentelhas, PC, Gonçalves, JLM and Sparovek, G (2013) Köppen's climate classification map for Brazil. Meteorologische Zeitschrift 22, 711728.CrossRefGoogle Scholar
Association of Official Agricultural Chemists – AOAC (2012) Official Methods of Analysis of AOAC International, 19th Edn. Arlington, VA: AOAC International. Available at http://www.aoac.orgGoogle Scholar
Beckie, HJ, Ashworth, MB and Flower, KC (2019) Herbicide resistance management: recent developments and trends. Plants 8, 161.CrossRefGoogle ScholarPubMed
BRASIL (2003) Instrução Normativa n° 8, de 11 de junho de 2003. Diário Oficial da União 1, 4-6. Available at https://pesquisa.in.gov.br/imprensa/servlet/INPDFViewer?jornal=1&pagina=4&data=13/06/2003&captchafield=firstAccessGoogle Scholar
Campuzano-Duque, LF, Herrera, JC, Ged, C and Blair, MW (2021) Bases for the establishment of Robusta Coffee (Coffea canephora) as a new crop for Colombia. Agronomy 11, 2550.CrossRefGoogle Scholar
Cardoso, DP, Silva, MLN, de Carvalho, GJ, de Freitas, DAF and Avanzi, JC (2012) Plantas de cobertura no controle das perdas de solo, água e nutrientes por erosão hídrica. Revista Brasileira de Engenharia Agrícola e Ambiental 16, 632638.CrossRefGoogle Scholar
Carvalho, FP, Souza, BP, França, AC, Ferreira, EA, Franco, MHR, Kasuya, MCM and Ferreira, FA (2014) Glyphosate drift affects arbuscular mycorrhizal association in coffee. Planta Daninha 32, 783789.CrossRefGoogle Scholar
Cavalli, E, Lange, A, Cavalli, C and Behling, M (2018) Decomposition and release of nutrients from crop residues on soybean-maize cropping systems. Revista Brasileira de Ciências Agrárias 13, e5527.CrossRefGoogle Scholar
Colodetti, TV, Rodrigues, WN, Brinate, SVB, Martins, LD, Cavatte, PC and Tomaz, MA (2020) The management of orthotropic stems modulates the photosynthetic performance and biomass allocation of productive plants of Arabica coffee. Revista Ceres 67, 454463.CrossRefGoogle Scholar
Companhia Nacional de Abastecimento – CONAB (2022) Acompanhamento da safra brasileira de café – safra 2022. Brasília: CONAB, 2022. 65 p.Google Scholar
Costa, NdL, Jank, L, Magalhães, JA, Bendahan, AB, Rodrigues, BHN and Santos, FdS (2021) Forage productivity and chemical composition of Panicum maximum cv. Mombaça under defoliations intensities and frequencies. Research, Society and Development 10, e42910817494.CrossRefGoogle Scholar
Dávila-Solarte, P, Sanginés-García, L, Amezcua, T and Solano, L (2019) Productive performance and economic evaluation of sheep grazing on weeds in coffee plantations compared to pastures with or without supplementation. Agroforestry System 97, 175183.CrossRefGoogle Scholar
Dias, MdC, Costa, KdP, Severiano, EdC, Bilego, UO, Furtini Neto, AE, Almeida, DP, Brand, SC and Vilela, L (2020) Brachiaria and Panicum maximum in an integrated crop–livestock system and a second-crop maize system in succession with soybean. The Journal of Agricultural Science 158, 206217.CrossRefGoogle Scholar
do Carmo, DL and Silva, CA (2012) Métodos de quantificação de carbono e matéria orgânica em resíduos orgânicos. Revista Brasileira de Ciência do Solo 36, 12111220.CrossRefGoogle Scholar
Fialho, GS, da Fonseca, AFA, Ferrão, MAG, Ferrão, RG, Olivoto, T, Nardino, M, dos Reis, EF and Sakiyamo, NS (2022) Conilon coffee outturn index: a precise alternative for estimating grain yield. Acta Scientiarum Agronomy 44, e54249.CrossRefGoogle Scholar
Franco Junior, KS, Terra, ABC, Teruel, TR, Mantovani, JR and Florentino, LA (2018) Effect of cover crops and bioactivators in coffee production and chemical properties of soil. Coffee Science 13, 559567. Available at http://www.coffeescience.ufla.br/index.php/Coffeescience/article/view/1516CrossRefGoogle Scholar
Garay, JR, Joaquin Cancino, S, Zárate Fortuna, P, Ibarra Hinojosa, MA, Martínez González, JC, González Dávila, RP and Cienfuegos Rivas, EG (2017) Dry matter accumulation and crude protein concentration in Brachiaria spp. cultivars in the humid tropics of Ecuador. Tropical Grasslands 5, 6676.CrossRefGoogle Scholar
Grzyb, A, Wolna-Maruwka, A and Niewiadomska, A (2020) Environmental factors affecting the mineralization of crop residues. Agronomy 10, 1951.CrossRefGoogle Scholar
Haggbladea, S, Mintenb, B, Prayc, C, Reardona, T and Zilberman, D (2017) The herbicide revolution in developing countries: patterns, causes, and implications. The European Journal of Development Research 29, 533559.CrossRefGoogle Scholar
Islam, F, Wang, J, Farooq, MA, Khan, MSS, Xu, L, Zhu, J, Zhao, M, Muños, S, Li, QX and Zhou, W (2018) Potential impact of the herbicide 2,4-dichlorophenoxyacetic acid on human and ecosystems. Environment International 111, 332351.CrossRefGoogle ScholarPubMed
John, J and Liu, H (2018) Glyphosate monitoring in water, foods and urine reveals an association between urinary glyphosate and tea drinking: a pilot study. Journal of Environmental Health Engineering 7, 2.Google Scholar
Jose, S and Dollinger, J (2019) Silvopasture: a sustainable livestock production system. Agroforestry System 93, 19.CrossRefGoogle Scholar
Lazzarini, I, Detmann, E, Sampaio, CB, Paulino, MF, Valadares Filho, SC, Souza, MA and Oliveira, FA (2009) Intake and digestibility in cattle fed low-quality tropical forage and supplemented with nitrogenous compounds. Revista Brasileira de Zootecnia 38, 20212030. Available at https://goo.gl/s3WvxNCrossRefGoogle Scholar
Leite, RG, Cardoso, AD, Fonseca, NVB, Silva, MLC, Tedeschi, LO, Delevatti, LMD, Ruggieri, AC and Reis, RA (2021) Effects of nitrogen fertilization on protein and carbohydrate fractions of Marandu palisadegrass. Scientific Reports 11, 14786.CrossRefGoogle ScholarPubMed
Maia, G, Pinho Costa, K, Costa Severiano, E, Epifanio, P, Neto, J, Ribeiro, M, Fernandes, P, Guimarães Silva, J and Gonçalves, W (2014) Yield and chemical composition of Brachiaria forage grasses in the offseason after corn harvest. American Journal of Plant Sciences 5, 933941.CrossRefGoogle Scholar
Martello, M, Molin, JP, Bazame, HC, Tavares, TR and Maldaner, LF (2022) Use of active sensors in coffee cultivation for monitoring crop yield. Agronomy 12, 2118.CrossRefGoogle Scholar
Medic, A and Baez Vega, CB (2021) Benefits of cover cropping systems in walnut orchards as sustainable agricultural practice. Journal of Sustainability and Climate Change 1, 5. Available at https://digitalcommons.humboldt.edu/sustainability/vol1/iss1/5/Google Scholar
Megerssa, B, Welde Michael, G and Teshome, D (2012) Knowledge and attitude of small holder coffee producing farmers to coffee quality. Ethiopian Journal of Applied Science and Technology 3, 3144. Available at https://ejhs.ju.edu.et/index.php/ejast/article/view/864Google Scholar
Melloni, R, Belleze, G, Pinto, AMS, Dias, AdP, Silve, EM, Melloni, EGP, Alvarenga, MIN and de Alcântara, EN (2013) Métodos de controle de plantas daninhas e seus impactos na qualidade microbiana de solo sob cafeeiro. Revista Brasileira de Ciência do Solo 37, 6675.CrossRefGoogle Scholar
Mishra, MK (2019) Genetic resources and breeding of coffee (coffea spp.). In Al-Khayri, J, Jain, S and Johnson, D (eds), Advances in Plant Breeding Strategies: Nut and Beverage Crops. Cham, Switzerland: Springer, pp. 475515.CrossRefGoogle Scholar
Mulindwa, J, Kaaya, AN, Muganga, L, Paga, M, Musoli, P, Sseremba, G, Wagoire, WW and Bitalo, DN (2021) Cup quality profiles of Robusta coffee wilt disease resistant varieties grown in three agro-ecologies in Uganda. Journal of the Science of Food and Agriculture 102, 12251232.CrossRefGoogle ScholarPubMed
National Water Agency of Brazil (2022) HIDROWEB. Available at https://www.snirh.gov.br/hidroweb/serieshistoricas (Accessed 11 February 2022).Google Scholar
Oliveira, S, Costa, KA, Severiano, E, da Silva, A, Dias, M, Oliveira, G and Costa, JV (2020) Performance of grain sorghum and forage of the genus Brachiaria in integrated agricultural production systems. Agronomy 10, 1714.CrossRefGoogle Scholar
Partelli, FL, Duarte, H, Freitas, SdP and Espindola, JAA (2010) Aspectos fitossociológicos e manejo de plantas espontâneas utilizando espécies de cobertura em cafeeiro Conilon orgânico. Semina: Ciências Agrárias 31, 605617.Google Scholar
Pereira, CTM, Sera, GH, Sera, T, Shigueoka, LH, Carducci, FC, Dias da Silva, JBG and Telles, TS (2022) Arabica coffee yields and profitability improved by reducing the spacing within the rows. Agronomy Journal 114, 12201228.CrossRefGoogle Scholar
Quartezani, WZ, Sales, RAD, Berilli, SDS, Pletsch, TA, Rodrigues, WP, Campostrini, E and Mantoanelli, E (2018) Effect of different sources of organic matter added to the substrate on physiological parameters of clonal plants of conilon coffee. Australian Journal of Crop Science 12, 13281334.CrossRefGoogle Scholar
R Core Team (2017) R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. Available at https://www.r-project.org/ (Accessed 12 February 2023).Google Scholar
Ragassi, CF, Pedrosa, AW and Favarin, JL (2013) Aspectos positivos e riscos no consórcio cafeeiro e braquiária. Visão Agrícola 12, 2932.Google Scholar
Ronchi, CP and DaMatta, FM (2019) Physiological aspects of conilon coffee. In Ferrão, RG, da Fonseca, AFA, Ferrão, MAG and De Muner, LH (eds), Conilon Coffee, 3rd Edn. Vitória, ES: Incaper. cap.5, pp. 111143.Google Scholar
Schrübbers, LC, Masís-Mora, M, Rojas, EC, Valverde, BE, Christensen, JH and Cedergreen, N (2016) Analysis of glyphosate and aminomethylphosphonic acid in leaves from Coffea arabica using high performance liquid chromatography with quadrupole mass spectrometry detection. Talanta 146, 609620.CrossRefGoogle ScholarPubMed
Serrano, J, Shahidian, S and Marques da Silva, J (2016) Calibration of Grass Master II to estimate green and dry matter yield in Mediterranean pastures: effect of pasture moisture content. Crop and Pasture Science 67, 780791.CrossRefGoogle Scholar
Tanimonure, VA and Naziri, D (2021) Impact of climate adaptation strategies on the net farm revenue of underutilised indigenous vegetables’ (UIVs) production in Southwest Nigeria. Resources, Environment and Sustainability 5, 100029.CrossRefGoogle Scholar
Teixeira, PC, Donagemma, GK, Fontana, A and Teixeira, WG (2017) Manual de métodos de análise de solo, 3rd Edn. Brasília: Embrapa, 573 p.Google Scholar
Terra, S, Gimenes, FMA, Giacomini, AA, Gerdes, L, Manço, MX, de Mattos, WT and Batista, K (2020) Seasonal alteration in sward height of Marandu palisade grass (Brachiaria brizantha) pastures managed by continuous grazing interferes with forage production. Crop and Pasture Science 71, 285293.CrossRefGoogle Scholar
Watthier, M, Antonio, NP, Gomes, JA, Rocha, SBF and Santos, RHS (2020) Decomposition of green manure with different grass: legume ratios. Archives of Agronomy and Soil Science 66, 913924.CrossRefGoogle Scholar
Xia, J, Yuan, W, Wang, YP and Zhang, Q (2017) Adaptive carbon allocation by plants enhances the terrestrial carbon sink. Scientific Reports 7, 3341.CrossRefGoogle ScholarPubMed