Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-21T00:45:45.055Z Has data issue: false hasContentIssue false

The in vitro production, by rumen micro-organisms, of volatile fatty acids from cellulose and hemicellulose labelled with 14C

Published online by Cambridge University Press:  27 March 2009

I. H. Bath
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading
M. J. Head
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading

Extract

1. A new technique has been used to study the fermentation of hemicellulose and α-cellulose in vitro. This involved the use of 14C-labelled carbohydrates fermented in the presence of normal herbage material in an artificial rumen.

2. A method of growing grass in an atmosphere of 14CO2, its fractionation into hemicellulose and α-cellulose and the analysis of the labelled V.F.A. end-products are described.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1961

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Balch, D. A. & Rowland, S. J. (1957). Brit. J. Nutr. 11, 288.CrossRefGoogle Scholar
Barnett, A. J. D. & Reid, R. L. (1957). J. Agric. Sci. 49, 180.CrossRefGoogle Scholar
Bath, I. H. (1960). J. Sci. Fd Agric. 11, 560.CrossRefGoogle Scholar
Calvin, M., Heidelberger, C., Reid, J. C., Tolbert, B. M. & Yankwich, P. F. (1949). Isotopic Carbon. London: Chapman and Hall, Ltd.Google Scholar
Danielli, J. F., Hitchcock, M. W. S., Marshall, R. A. & Phillipson, A. T. (1945). J. Exp. Biol. 22, 75.CrossRefGoogle Scholar
Davey, L. A., Cheeseman, G. C. & Briggs, C. A. E. (1960). J. Agric. Sci. 55, 155.CrossRefGoogle Scholar
Elsden, S. R. (1945). Proc. Nutr. Soc. 3, 243.CrossRefGoogle Scholar
El-Shazly, K. (1952). Biochem. J. 51, 647.CrossRefGoogle Scholar
Glascock, R. F. (1954). Isotopic Gas Analysis for Biochemists. New York: Academic Press Inc.Google Scholar
Gray, F. V. (1947). J. Exp. Biol. 24, 15.CrossRefGoogle Scholar
Gray, F. V. & Pilgrim, A. F. (1951). J. Exp. Biol. 28, 83.CrossRefGoogle Scholar
Gray, F. V. & Pilgrim, A. F. (1952). Nature, Lond., 170, 375.CrossRefGoogle Scholar
Gray, F. V., Pilgrim, A. F., Rodda, H. J. & Weller, R. A. (1952). J. Exp. Biol. 29, 57.CrossRefGoogle Scholar
Gray, F. V., Pilgrim, A. F. & Weller, R. A. (1951). J. Exp. Biol. 28, 74.CrossRefGoogle Scholar
Louw, J. G., Williams, H. H. & Maynard, L. A. (1949). Science, 110. 478.CrossRefGoogle Scholar
McDougall, E. I. (1948). Biochem. J. 43, 99.CrossRefGoogle Scholar
Marston, H. R. (1948). Biochem. J. 42, 564.CrossRefGoogle Scholar
Phillipson, A. T. (1953). Biochem. Soc. Symp., no. 11. 63.Google Scholar
Porter, H. K. & Martin, R. V. (1952). J. Exp. Bot. 3, 326.CrossRefGoogle Scholar
Warner, A. C. I. (1956). J. Gen. Microbiol. 14, 733.CrossRefGoogle Scholar
Wiseman, H. G. & Irvin, H. M. (1957). J. Agric. Fd Chem. 5, 213.CrossRefGoogle Scholar