Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-03T18:58:02.421Z Has data issue: false hasContentIssue false

Impact of water deficit on light interception, radiation use efficiency and leaf area index in a potato crop (Solanum tuberosum L.)

Published online by Cambridge University Press:  13 July 2015

D. C. CAMARGO*
Affiliation:
Regional Centre of Water Research (CREA), Castilla-La Mancha University (UCLM), Ctra. de las Peñas, km 3·2 02071 Albacete, Spain
F. MONTOYA
Affiliation:
Regional Centre of Water Research (CREA), Castilla-La Mancha University (UCLM), Ctra. de las Peñas, km 3·2 02071 Albacete, Spain
M. A. MORENO
Affiliation:
Regional Centre of Water Research (CREA), Castilla-La Mancha University (UCLM), Ctra. de las Peñas, km 3·2 02071 Albacete, Spain
J. F. ORTEGA
Affiliation:
Department of Crop Production and Agricultural Technology, ETSIA, Castilla-La Mancha University (UCLM), Campus Universitario s/n 02071 Albacete, Spain
J. I. CÓRCOLES
Affiliation:
Regional Centre of Water Research (CREA), Castilla-La Mancha University (UCLM), Ctra. de las Peñas, km 3·2 02071 Albacete, Spain
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

The aim of the current research was to analyse the effect of four water irrigation treatments (1·20, 1·00, 0·80 and 0·60 of the crop water requirement) on the relationships among leaf area index (LAI), radiation use efficiency (RUE) and green canopy cover in a potato crop (Solanum tuberosum L.) cv. Agria. The crop was established in a commercial plot irrigated with a centre pivot system in Southeast Spain during the 2011 and 2012 seasons. In both seasons, the highest light absorption efficiency values occurred at the LAI value of 3 that corresponded to maximum ground cover. With regard to the irrigation treatment, a significant linear response was indicated for RUE. The results indicate that the 1·00 irrigation treatment produced the best result, improving water resources management without reducing crop yield.

Type
Crops and Soils Research Papers
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, R. G., Pereira, L. S., Raes, D. & Smith, M. (1998). Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage paper 56. Rome: FAO.Google Scholar
ANSI/ASABE Standards (2001). Test Procedure for Determining the Uniformity of Water Distribution of Center Pivot and Lateral Move Irrigation Machines Equipped with Spray or Sprinkler Nozzles. ANSI/ASABE Standards S436·1. St. Joseph, MI: ASABE.Google Scholar
Ballesteros, R., Ortega, J. F., Hernández, D. & Moreno, M. A. (2014 a). Applications of georeferenced high-resolution images obtained with unmanned aerial vehicles. Part I: description of image acquisition and processing. Precision Agriculture 15, 579592.Google Scholar
Ballesteros, R., Ortega, J. F., Hernández, D. & Moreno, M. A. (2014 b). Applications of georeferenced high-resolution images obtained with unmanned aerial vehicles. Part II: application to maize and onion crops of a semi-arid region in Spain. Precision Agriculture 15, 593614.Google Scholar
Bégué, A. (1993). Leaf area index, intercepted photosynthetically active radiation, and spectral vegetation indices: a sensitivity analysis for regular-clumped canopies. Remote Sensing of Environment 46, 4559.Google Scholar
Boegh, E., Soegaard, H., Broge, N., Hasager, C. B., Jensen, N. O., Schelde, K. & Thomsen, A. (2002). Airborne multispectral data for quantifying leaf area index, nitrogen concentration, and photosynthetic efficiency in agriculture. Remote Sensing of Environment 81, 179193.Google Scholar
Boyd, N. S., Gordon, R. & Martin, R. C. (2002). Relationship between leaf area index and ground cover in potato under different management conditions. Potato Research 45, 117129.CrossRefGoogle Scholar
Cadersa, Y. & Govinden, N. (1999). Relationship between canopy cover and light interception in potato in a tropical climate. In Proceedings of the Third Annual Meeting of Agricultural Scientists (Eds Lalouette, J. A., Bachraz, D. Y. & Sukurdeep, N.), pp. 137144. Réduit, Mauritius: Food and Agricultural Research Council.Google Scholar
Castallanos, M. S., Abril, M. S. & López, C. E.Ñ. (2010). Análisis del crecimiento y relación fuente-demanda de cuatro variedades de papa (Solanum tuberosum L.) en el municipio de Zipaquirá (Cundinamarca, Colombia). Revista Facultad Nacional de Agronomía – Medellín 63, 52535266.Google Scholar
Córcoles, J. I., Ortega, J. F., Hernández, D. & Moreno, M. A. (2013). Estimation of leaf area index in onion (Allium cepa L.) using an unmanned aerial vehicle. Biosystems Engineering 115, 3142.Google Scholar
De La Casa, A., Ovando, G., Bressanini, L., Rodriguéz, A. & Martinéz, J. (2007). Uso del índice de área foliar y del porcentaje de cobertura del suelo para estimar la radiación interceptada en papa. Agricultura Técnica 67, 7885.CrossRefGoogle Scholar
De La Casa, A., Ovando, G., Bressanini, L., Martinéz, J. & Rodriguéz, A. (2011). Eficiencia en el uso de la radiación en papa estimada a partir de la cobertura del follaje. Agriscientia 28, 2130.Google Scholar
Dong, T. & Wu, B. (2012). Estimate faction of photosynthetically active radiation with three-band vegetation indices based on HJ-CDD satellite in wheat. First International Conference on Agro-Geoinformatics, pp. 15. Shanghai: IEEE.Google Scholar
FAO (2014). FAOSTAT. Rome: FAO. Available online at: http://faostat3.fao.org/faostat-gateway/go/to/download/Q/QC/E (Verified 4 April 2014).Google Scholar
Gallo, K. P. & Daughtry, C. S. T. (1986). Techniques for measuring intercepted and absorbed photosynthetically active radiation in corn canopies. Agronomy Journal 78, 752756.Google Scholar
Guillén-Climent, M. L., Zarco-Tejada, P. J. & Villalobos, F. J. (2014). Estimating radiation interception in heterogeneous orchards using high spatial resolution airborne imagery. IEEE Geoscience and Remote Sensing Letters 11, 579583.CrossRefGoogle Scholar
Gordon, R., Brown, D. M. & Dixon, M. A. (1997). Estimating potato leaf area index for specific cultivars. Potato Research 40, 251266.Google Scholar
Gosse, G., Varlet-Grancher, C., Bonhomme, R., Chartier, M., Allirand, J. M. & Lemaire, G. (1986). Production maximale de matière sèche et rayonnement solaire intercepté par un couvert végétal. Agronomie 6, 4756.Google Scholar
Hall, A. J., Connor, D. J. & Sadras, V. O. (1995). Radiation-use efficiency of sunflower crops: effects of specific leaf nitrogen and ontogeny. Field Crops Research 41, 6577.Google Scholar
Hassanpanah, D. (2010). Evaluation of potato cultivars for resistance against water deficit stress under in vivo conditions. Potato Research 53, 383392.Google Scholar
Haverkort, A. J., Uenk, D., Veroude, H. & Van De Waart, M. (1991). Relationships between ground cover, intercepted solar radiation, leaf area index and infrared reflectance of potato crops. Potato Research 34, 113121.Google Scholar
Heermann, D. (1990). Center pivot design and evaluation. In Visions of the Future: Proceedings of the Third National Irrigation Symposium held in conjunction with the 11th Annual International Irrigation Exposition, pp. 564570. ASAE Publication 04–90. St Joseph, MI: ASAE.Google Scholar
ISO (2001). ISO-11545 Agricultural Irrigation Equipment. Centre-pivot and Moving Lateral Irrigation Machines with Sprayer or Sprinkler Nozzles. Determination of Uniformity of Water Distribution. Geneva: ISO.Google Scholar
Jayanthi, H., Neale, C. M. U. & Wright, J. L. (2007). Development and validation of canopy reflectance-based crop coefficient for potato. Agricultural Water Management 88, 235246.Google Scholar
Jongschaap, R. E. E. & Booij, R. (2004). Spectral measurements at different spatial scales in potato: relating leaf, plant and canopy nitrogen status. International Journal of Applied Earth Observation and Geoinformation 5, 205218.CrossRefGoogle Scholar
Kooman, P. L., Fahem, M., Tegera, P. & Haverkort, A. J. (1996). Effects of climate on different potato genotypes 2. Dry matter allocation and duration of the growth cycle. European Journal of Agronomy 5, 207217.Google Scholar
Kucharik, C. J., Norman, J. M. & Gower, S. T. (1998). Measurements of branch area and adjusting leaf area index indirect measurements. Agricultural and Forest Meteorology 91, 6988.Google Scholar
Merriam, J. L., Shearer, M. N. & Burt, C. M. (1980). Evaluating irrigation systems and practices. In Design and Operation of Farm Irrigation Systems. (Ed. Jensen, M. E.), pp. 721760. ASAE Monograph 3. St. Joseph, MI: ASAE.Google Scholar
Monteith, J. L. (1977). Climate and the efficiency of crop production in Britain. Philosophical Transactions of the Royal Society of London B: Biological Sciences 281, 277294.Google Scholar
Onder, S., Caliskan, M. E., Onder, D. & Caliskan, S. (2005). Different irrigation methods and water stress effect on potato yield and yield components. Agricultural Water Management 73, 7386.CrossRefGoogle Scholar
Papadakis, J. (1960). Geografía Agrícola Mundial. Barcelona, Spain: Editorial Salvat.Google Scholar
Pereira, L. S. & Allen, R. G. (1999). Crop water requirements. In CIGR Handbook of Agricultural Engineering, Vol I: Land and Water Engineering (Eds van Lier, H., Pereira, L. S. & Steiner, F. R.), pp. 213262. St. Joseph, MI: ASAE.Google Scholar
Rahman, M. M., Stanley, J. N., Lamb, D. W. & Trotter, M. G. (2014). Methodology for measuring fAPAR in crops using a combination of active optical and linear irradiance sensors: a case study in Triticale (X Triticosecale Wittmack). Precision Agriculture 15, 532542.Google Scholar
Sinclair, T. R. & Muchow, R. C. (1999). Radiation use efficiency. Advances in Agronomy 65, 215265.CrossRefGoogle Scholar
Shock, C. C., Feibert, E. B. G. & Saunders, L. D. (1998). Potato yield and quality response to deficit irrigation. HortScience 33, 655659.Google Scholar
Sun, J., Yang, L., Wang, Y. & Ort, D. R. (2009). FACE-ing the global change: opportunities for improvement in photosynthetic radiation use efficiency and crop yield. Plant Science 177, 511522.Google Scholar
Szeicz, G. (1974). Solar radiation for plant growth. Journal of Applied Ecology 11, 617636.Google Scholar
Turner, D. P., Cohen, W. B., Kennedy, R. E., Fassnacht, K. S. & Briggs, J. M. (1999). Relationships between leaf area index and landsat tm spectral vegetation indices across three temperate zone sites. Remote Sensing of Environment 70, 5268.CrossRefGoogle Scholar
USDA (2006). Keys to Soil Taxonomy, 10th edn, Washington, DC: USDA NRCS.Google Scholar
Varlet-Grancher, C., Bonhomme, R., Chartier, M. & Artis, P. (1982). Efficience de la conversion de l´énergie solaire par un couvert végétal. Acta Oecologica: Oecologica Plantarum 3, 326.Google Scholar
Varlet-Grancher, C., Gosse, G., Chartier, M., Sinoquet, H., Bonhomme, R. & Allirand, J. M. (1989). Mise au point: rayonnement solaire absorbé ou intercepté par un couvert végétal. Agronomie 9, 419439.Google Scholar
Wright, J. L. (1982). New evapotranspiration crop coefficients. ASCE Journal of the Irrigation and Drainage Division 108, 5773.Google Scholar
Yuan, B.-Z., Nishiyama, S. & Kang, Y. (2003). Effect different irrigation regimes on the growth and yield of drip-irrigated potato. Agricultural Water Management 63, 153167.Google Scholar