Hostname: page-component-599cfd5f84-ncv4z Total loading time: 0 Render date: 2025-01-07T07:42:55.192Z Has data issue: false hasContentIssue false

Impact of high-temperature stress on rice plant and its traits related to tolerance

Published online by Cambridge University Press:  27 April 2011

F. SHAH
Affiliation:
MOA Key Laboratory of Crop Physiology, Ecology and Production, Huazhong Agricultural University, Wuhan 430070, China
J. HUANG*
Affiliation:
MOA Key Laboratory of Crop Physiology, Ecology and Production, Huazhong Agricultural University, Wuhan 430070, China
K. CUI
Affiliation:
MOA Key Laboratory of Crop Physiology, Ecology and Production, Huazhong Agricultural University, Wuhan 430070, China
L. NIE
Affiliation:
MOA Key Laboratory of Crop Physiology, Ecology and Production, Huazhong Agricultural University, Wuhan 430070, China
T. SHAH
Affiliation:
Department of Extension Education and Communication, Faculty of Rural Social Sciences, NWFP Agricultural University, Peshawar 25000, Pakistan
C. CHEN
Affiliation:
MOA Key Laboratory of Crop Physiology, Ecology and Production, Huazhong Agricultural University, Wuhan 430070, China
K. WANG
Affiliation:
MOA Key Laboratory of Crop Physiology, Ecology and Production, Huazhong Agricultural University, Wuhan 430070, China
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

The predicted 2–4°C increment in temperature by the end of the 21st Century poses a threat to rice production. The impact of high temperatures at night is more devastating than day-time or mean daily temperatures. Booting and flowering are the stages most sensitive to high temperature, which may sometimes lead to complete sterility. Humidity also plays a vital role in increasing the spikelet sterility at increased temperature. Significant variation exists among rice germplasms in response to temperature stress. Flowering at cooler times of day, more pollen viability, larger anthers, longer basal dehiscence and presence of long basal pores are some of the phenotypic markers for high-temperature tolerance. Protection of structural proteins, enzymes and membranes and expression of heat shock proteins (HSPs) are some of the biochemical processes that can impart thermo-tolerance. All these traits should be actively exploited in future breeding programmes for developing heat-resistant cultivars. Replacement of heat-sensitive cultivars with heat-tolerant ones, adjustment of sowing time, choice of varieties with a growth duration allowing avoidance of peak stress periods, and exogenous application of plant hormones are some of the adaptive measures that will help in the mitigation of forecast yield reduction due to global warming.

Type
Climate Change and Agriculture
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abeysiriwardena, D. S., De, Z., Ohba, K. & Maruyama, A. (2002). Influence of temperature and relative humidity on grain sterility in rice. Journal of the National Science Foundation of Sri Lanka 30, 3341.CrossRefGoogle Scholar
Afuakwa, J. J., Crookston, R. K. & Jones, R. J. (1984). Effect of temperature and sucrose availability on kernel black layer development in maize. Crop Science 24, 285288.CrossRefGoogle Scholar
Ahmad, S., Li, C., Dai, G., Zhan, M., Wang, J., Pan, S. & Cao, C. (2009). Greenhouse gas emission from direct seeding paddy field under different rice tillage systems in central China. Soil and Tillage Research 106, 5461.CrossRefGoogle Scholar
Akman, Z. (2009). Comparison of high temperature tolerance in maize, rice and sorghum seeds, by plant growth regulators. Journal of Animal and Veterinary Advances 8, 358361.Google Scholar
Baker, J. T., Allen, L. H. Jr & Boote, K. J. (1990). Growth and yield responses of rice to carbon dioxide concentration. Journal of Agricultural Science, Cambridge 115, 313320.CrossRefGoogle Scholar
Baker, J. T., Allen, L. H. Jr. & Boote, K. J. (1992). Temperature effects on rice at elevated CO2 concentration. Journal of Experimental Botany 43, 959964.CrossRefGoogle Scholar
Burke, J. J., O'Mahony, P. J. & Oliver, M. J. (2000). Isolation of Arabidopsis mutants lacking components of acquired thermotolerance. Plant Physiology 123, 575587.CrossRefGoogle ScholarPubMed
Cardon, L. R. & Bell, J. I. (2001). Association study designs for complex diseases. Nature Reviews Genetics 2, 9199.CrossRefGoogle ScholarPubMed
Ceccarelli, S., Grando, S., Maatougui, M., Michael, M., Slash, M., Haghparast, R., Rahmanian, M., Taheri, A., Al-Yassin, A., Benbelkacem, A., Labdi, M., Mimoun, H. & Nachit, M. (2010). Plant breeding and climate changes. Journal of Agricultural Science, Cambridge 148, 627637.CrossRefGoogle Scholar
Chang, P. F. L., Jinn, T. L., Huang, W. K., Chen, Y., Chang, H. M. & Wang, C. W. (2007). Induction of a cDNA clone from rice encoding a class II small heat shock protein by heat stress, mechanical injury, and salicylic acid. Plant Science 172, 6475.CrossRefGoogle Scholar
Clarke, S. M., Cristescu, S. M., Miersch, O., Harren, F. J. M., Wasternack, C. & Mur, L. A. J. (2009). Jasmonates act with salicylic acid to confer basal thermotolerance in Arabidopsis thaliana. New Phytologist 182, 175187.CrossRefGoogle ScholarPubMed
Dinar, M. & Rudich, J. (1985). Effect of heat stress on assimilate partitioning in tomato. Annals of Botany 56, 239248.CrossRefGoogle Scholar
Efeoglu, B. (2009). Heat shock proteins and heat shock response in plants. Gazi University Journal of Science 22, 6775.Google Scholar
Eitzinger, J., Orlandini, S., Stefanski, R. & Naylor, R. E. L. (2010). Climate change and agriculture: introductory editorial. Journal of Agricultural Science, Cambridge 148, 499500.CrossRefGoogle Scholar
Endo, M., Tsuchiya, T., Hamada, K., Kawamura, S., Yano, K., Ohshima, M., Higashitani, A., Watanabe, M. & Kawagishi-Kobayashi, M. (2009). High temperatures cause male sterility in rice plants with transcriptional alterations during pollen development. Plant and Cell Physiology 50, 19111922.CrossRefGoogle ScholarPubMed
Farrell, T. C., Fox, K. M., Williams, R. L. & Fukai, S. (2006). Genotypic variation for cold tolerance during reproductive development in rice: screening with cold air and cold water. Field Crops Research 98, 178194.CrossRefGoogle Scholar
Goldberg, R. B., Beals, T. P. & Sanders, P. M. (1993). Anther development: basic principles and practical applications. Plant Cell 5, 12171229.Google ScholarPubMed
Huang, B. & Xu, C. (2008). Identification and characterization of proteins associated with plant tolerance to heat stress. Journal of Integrative Plant Biology 50, 12301237.CrossRefGoogle ScholarPubMed
IPCC (Intergovernmental Panel on Climate Change) (2007). Climate change and its impacts in the near and long term under different scenarios. In Climate Change 2007: Synthesis Report (Eds The Core Writing Team, Pachauri, R. K. & Reisinger, A.), pp. 4354. Geneva, Switzerland: IPCC.Google Scholar
IRGSP (International Rice Genome Sequencing Project) (2005). The map-based sequence of the rice genome. Nature 436, 793800.CrossRefGoogle Scholar
IRRI (1976). Annual Report. Manila, The Philippines: IRRI.Google Scholar
IRRI (1977). Annual Report. Manila, The Philippines: IRRI.Google Scholar
Ishimaru, T., Hirabayashi, H., Ida, M., Takai, T., San-Oh, Y. A., Yoshinaga, S., Ando, I., Ogawa, T. & Kondo, M. (2010). A genetic resource for early-morning flowering trait of wild rice Oryza officinalis to mitigate high temperature-induced spikelet sterility at anthesis. Annals of Botany 106, 515520.CrossRefGoogle ScholarPubMed
Ismail, A. M., Heuer, S., Thomson, M. J. & Wissuwa, M. (2007). Genetic and genomic approaches to develop rice germplasm for problem soils. Plant Molecular Biology 65, 547570.CrossRefGoogle ScholarPubMed
Jagadish, S. V. K., Craufurd, P. Q. & Wheeler, T. R. (2007). High temperature stress and spikelet fertility in rice (Oryza sativa L.). Journal of Experimental Botany 58, 16271635.CrossRefGoogle ScholarPubMed
Jeon, J. S., Lee, S., Jung, K. H., Jun, S. H., Jeong, D. H., Lee, J., Kim, C., Jang, S., Yang, K., Nam, J., An, K., Han, M. J., Sung, R. J., Choi, H. S., Yu, J. H., Choi, J. H., Cho, S. Y., Cha, S. S., Kim, S. I. & An, G. (2000). Technical Advance: T-DNA insertional mutagenesis for functional genomics in rice. Plant Journal 22, 561570.CrossRefGoogle Scholar
Jones, M. P., Dingkuhn, M., Aluko, G. K. & Semon, M. (1997). Interspecific Oryza sativa L.×O. glaberrima Steud. progenies in upland rice improvement. Euphytica 92, 237246.CrossRefGoogle Scholar
Katiyar-Agarwal, S., Agarwal, M. & Grover, A. (2003). Heat-tolerant basmati rice engineered by over-expression of hsp101. Plant Molecular Biology 51, 677686.CrossRefGoogle ScholarPubMed
Keijzer, C. J., Leferink-Ten Klooster, H. B. & Reinders, M. C. (1996). The mechanics of the grass flower: anther dehiscence and pollen shedding in maize. Annals of Botany 78, 1521.CrossRefGoogle Scholar
Keeling, P. L., Banisadr, R., Barone, L., Wasserman, B. P. & Singletary, G. W. (1994). Effect of temperature on enzymes in the pathway of starch biosynthesis in developing wheat and maize grain. Australian Journal of Plant Physiology 21, 807827.Google Scholar
Klueva, N. Y., Maestri, E., Marmiroli, N. & Nguyen, H. T. (2001). Mechanisms of thermotolerance in crops. In Crop Responses and Adaptations to Temperature Stress (Ed. Basra, A. S.), pp. 177218. Binghampton, NY: Food Products Press.Google Scholar
Kobayasi, K. & Atsuta, Y. (2010). Sterility and poor pollination due to early flower opening induced by methyl jasmonate. Plant Production Science 13, 2936.CrossRefGoogle Scholar
Krishnan, P. & Surya Rao, A. V. (2005). Effects of genotype and environment on seed yield and quality of rice. Journal of Agricultural Science, Cambridge 143, 283292.CrossRefGoogle Scholar
Kropff, M. J., Mathews, R. B., Van Laar, H. H. & Ten Berge, H. F. M. (1995). The rice model Oryza 1 and its testing. In Modeling the Impact of Climate Change on Rice Production in Asia (Eds Mathews, R. B., Kropff, M. J., Bachelet, D. & van Laar, H. H.), pp. 2750. Wallingford, Oxon, UK & Los Banos, Philippines: CABI & IRRI.Google Scholar
Kukla, G. & Karl, T. R. (1993). Nighttime warming and the green house effect. Environmental Science and Technology 27, 14681474.CrossRefGoogle Scholar
Larkindale, J., Hall, J. D., Knight, M. R. & Vierling, E. (2005). Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiology 138, 882897.CrossRefGoogle ScholarPubMed
Larkindale, J. & Knight, M. R. (2002). Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene and salicylic acid. Plant Physiology 128, 682695.CrossRefGoogle ScholarPubMed
Larkindale, J. & Vierling, E. (2008). Core genome responses involved in acclimation to high temperature. Plant Physiology 146, 748761.CrossRefGoogle ScholarPubMed
Lee, J. H., Hubel, A. & Schoffl, F. (1995). Derepression of the activity of genetically engineered heat shock factor causes constitutive synthesis of heat shock proteins and increased thermotolerance in transgenic Arabidopsis. Plant Journal 8, 603612.CrossRefGoogle ScholarPubMed
Liu, J. G., Qin, Q. L., Zhang, Z., Peng, R. H., Xiong, A. S., Chen, J. M. & Yao, Q. H. (2009). OsHSF7 gene in rice, Oryza sativa L., encodes a transcription factor that functions as a high temperature receptive and responsive factor. Biochemistry and Molecular Biology Reports 42, 1621.Google ScholarPubMed
Mackill, D. J., Coffman, W. R. & Rutger, J. N. (1982). Pollen shedding and combining ability for high temperature tolerance in rice. Crop Science 22, 730733.CrossRefGoogle Scholar
Maestri, E., Klueva, N., Perrota, C., Gulli, M., Nguyen, H. T. & Marmiroli, N. (2002). Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant Molecular Biology 48, 667681.CrossRefGoogle ScholarPubMed
Maraseni, T. N., Mushtaq, S. & Maroulis, J. (2009). Greenhouse gas emissions from rice farming inputs: a cross-country assessment. Journal of Agricultural Science, Cambridge 147, 117126.CrossRefGoogle Scholar
Matsui, T. (2005). Function of long basal dehiscence of the theca in rice (Oryza sativa L.) pollination under hot and humid condition. Phyton 45, 401407.Google Scholar
Matsui, T. & Kagata, H. (2003 a). Characteristics of floral organs related to reliable self pollination in rice (Oryza sativa L.). Annals of Botany 91, 473477.CrossRefGoogle ScholarPubMed
Matsui, T. & Kagata, H. (2003 b). Gas exchange through the slit between the lemma and the palea in the rice (Oryza sativa L.) floret before anthesis. Plant Production Science 6, 262264.CrossRefGoogle Scholar
Matsui, T., Kobayasi, K., Kagata, H. & Horie, T. (2005). Correlation between viability of pollination and length of basal dehiscence of the theca in rice under a hot and humid condition. Plant Production Science 8, 109114.CrossRefGoogle Scholar
Matsui, T., Kobayasi, K., Yoshimota, M. & Hasegawa, T. (2007). Stability of rice pollination in the field under hot and dry conditions in the Riverina region of New South Wales, Australia. Plant Production Science 10, 5763.CrossRefGoogle Scholar
Matsui, T., Namuco, O. S., Ziska, L. H. & Horie, T. (1997 a). Effects of high temperature and CO2 concentration on spikelet sterility in indica rice. Field Crops Research 51, 213219.CrossRefGoogle Scholar
Matsui, T., Omasa, K. & Horie, T. (1997 b). High temperature-induced spikelet sterility of japonica rice at flowering in relation to air temperature, humidity and wind velocity condition. Japanese Journal of Crop Science 66, 449455.CrossRefGoogle Scholar
Matsui, T. & Omasa, K. (2002). Rice (Oryza sativa L.) cultivars tolerant to high temperature at flowering: anther characteristics. Annals of Botany 89, 683687.CrossRefGoogle ScholarPubMed
Matsui, T., Omasa, K. & Horie, T. (1999 a). Mechanism of anther dehiscence in rice (Oryza sativa L.). Annals of Botany 84, 501506.CrossRefGoogle Scholar
Matsui, T., Omasa, K. & Horie, T. (1999 b). Rapid swelling of pollen grains in response to floret opening unfolds locule in rice. Plant Production Science 2, 196199.CrossRefGoogle Scholar
Matsui, T., Omasa, K. & Horie, T. (2000). High temperature at flowering inhibits swelling of pollen grains, a driving force for thecae dehiscence in rice (Oryza sativa L.). Plant Production Science 3, 430434.CrossRefGoogle Scholar
Matsui, T., Omasa, K. & Horie, T. (2001). The difference in sterility due to high temperatures during the flowering period among japonica-rice varieties. Plant Production Science 4, 9093.CrossRefGoogle Scholar
Michael, G. & Beringer, H. (1980). The role of hormones in yield formation. In Physiological Aspects of Crop Productivity: Proceedings of the 15th Colloquium of the International Potash Institute, held in Wageningen, the Netherlands (Eds Michael, G. & Beringer, H.), pp. 85116. Bern, Switzerland: International Potash Institute.Google Scholar
Mohammed, A. R. & Tarpley, L. (2009 a). High nighttime temperatures affect rice productivity through altered pollen germination and spikelet fertility. Agricultural and Forest Meteorology 149, 9991008.CrossRefGoogle Scholar
Mohammed, A. R. & Tarpley, L. (2009 b). Impact of high nighttime temperature on respiration, membrane stability, antioxidant capacity, and yield of rice plants. Crop Science 49, 313322.CrossRefGoogle Scholar
Morita, S., Shiratsuchi, H., Takahashi, J. & Fujita, K. (2004). Effect of high temperature on ripening in rice plants: analysis of the effects of high night and high day temperatures applied to the panicle and other parts of the plant. Japanese Journal of Crop Science 73, 7783 [in Japanese with English summary].CrossRefGoogle Scholar
Moya, T. B., Ziska, L. H., Namuco, O. S. & Olszyk, D. (1998). Growth dynamics and genotypic variation in tropical, field-grown paddy rice (Oryza sativa L.) in response to increasing carbon dioxide and temperature. Global Change Biology 4, 645656.CrossRefGoogle Scholar
Nagai, T. & Makino, A. (2009). Differences between rice and wheat in temperature responses of photosynthesis and plant growth. Plant and Cell Physiology 50, 744755.CrossRefGoogle ScholarPubMed
Nakagawa, H., Horie, T. & Matsui, T. (2003). Effects of climate change on rice production and adaptive technologies. In Rice Science: Innovations and Impact for Livelihood. Proceedings of the International Rice Research Conference, Beijing, China, 16–19 September 2002 (Eds Mew, T. W., Brar, D. S., Peng, S., Dawe, D. & Hardy, B.), pp. 635658. Manila, The Philippines: IRRI.Google Scholar
Nakagawa, H., Takahashi, W., Hasegawa, T., Watanabe, T. & Horie, T. (2001). Development of a three-dimensional simulator for rice growth and development. II. Accuracy of a rice phenology model to simulate heading stage and plant age in leaf number. Japanese Journal of Crop Science 70, 125126.Google Scholar
Nishiyama, I. & Blanco, L. (1980). Avoidance of high-temperature sterility by flower opening early in the morning. Japan Agricultural Research Quarterly 14, 116117.Google Scholar
Nishiyama, I. & Blanco, L. (1981). Artificial control of flower opening time during the day in rice plants. Japanese Journal of Crop Science 1, 5966.CrossRefGoogle Scholar
Nishiyama, I. & Satake, T. (1981). High temperature damage in the rice plant. Japanese Journal of Tropical Agriculture 26, 1925.Google Scholar
Pareek, A., Singla, S. L. & Grover, A. (1995). Immunological evidence for accumulation of two high-molecular-weight (104 and 90 kDa) HSPs in response to different stresses in rice and in response to high temperature stress in diverse plant genera. Plant Molecular Biology 29, 293301.CrossRefGoogle ScholarPubMed
Peng, S., Huang, J., Sheehy, J. E., Laza, R. C., Visperas, R. M., Zhong, X., Centeno, G. S., Khush, G. S. & Cassman, K. G. (2004). Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences, USA 101, 99719975.CrossRefGoogle ScholarPubMed
Prasad, P. V. V., Boote, K. J., Allen, L. H. Jr, Sheehy, J. E. & Thomas, J. M. G. (2006). Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crops Research 95, 398411.CrossRefGoogle Scholar
Rosenzweig, C. & Parry, M. L. (1994). Potential impact of climate change on world food supply. Nature 367, 133138.CrossRefGoogle Scholar
Satake, T. & Yoshida, S. (1978). High temperature-induced sterility in indica rices at flowering. Japanese Journal of Crop Science 47, 617.CrossRefGoogle Scholar
Sheehy, J. E., Elmido, A., Centeno, G. & Pablico, P. (2005). Searching for new plants for climate change. Journal of Agricultural Meteorology 60, 463468.CrossRefGoogle Scholar
Sheehy, J. E., Elmido, A. & Mitchell, P. (2001). Are there time-of-day clock genes for flowering? In Annual Meeting of the American Society of Agronomy October 21–25, 2001, Charlotte, NC, USA. Abstract, p. 56. Madison, WI: ASA.Google Scholar
Shimazaki, Y., Satake, T., Watanabe, K. & Ito, N. (1964). Effect of day- and night-temperature accompanied by shading treatment during the booting stage upon the induction of sterile spikelets in rice plants. (Studies of cool weather injuries of rice plants in northern part of Japan. IV.) [In Japanese, with English summary]. Research Bulletin of the Hokkaido National Agricultural Experiment Station 83, 1016.Google Scholar
Singletary, G. W., Banisadr, R. & Keeling, P. L. (1994). Heat stress during grain filling in maize. Effects on carbohydrate storage and metabolism. Australian Journal of Plant Physiology 21, 829841.Google Scholar
Smith, P. & Olesen, J. E. (2010). Synergies between the mitigation of, and adaptation to, climate change in agriculture. Journal of Agricultural Science, Cambridge 148, 543552.CrossRefGoogle Scholar
Song, Z. P., Lu, B. R. & Chen, K. J. (2001). A study of pollen viability and longevity in Oryza rufipogon, O. sativa and their hybrids. International Rice Research Notes 26, 3132.Google Scholar
Stone, P. (2001). The effects of heat stress on cereal yield and quality. In Crop Responses and Adaptations to Temperature Stress (Ed. Basra, A. S.), pp. 243291. Binghamton, NY, USA: Food Products Press.Google Scholar
Takeoka, Y., Al Mamun, A., Wada, T. & Kaufman, P. B. (1992). Primary features of the effect of environmental stress on rice spikelet morphogenesis. In Reproductive Adaptation of Rice to Environmental Stress (Eds Takeoka, Y., Al Mamun, A., Wada, T. & Kaufman, P. B.), pp. 113141. Developments in Crop Science Vol. 22. Tokyo, Japan: Japan Scientific Societies Press/Elsevier.Google Scholar
Tang, R. S., Zheng, J. C., Jin, Z. Q., Zhang, D. D., Huang, Y. H. & Chen, L. G. (2008). Possible correlation between high temperature-induced floret sterility and endogenous levels of IAA, Gas and ABA in rice (Oryza sativa L.). Plant Growth Regulation 54, 3743.CrossRefGoogle Scholar
Timperio, A. M., Egidi, M. G. & Zolla, L. (2008). Proteomics applied on plant abiotic stresses: role of heat shock proteins (HSP). Journal of Proteomics 71, 391411.CrossRefGoogle ScholarPubMed
Wahid, A., Gelani, S., Ashraf, M., & Foolad, M. R. (2007). Heat tolerance in plants: an overview. Environmental and Experimental Botany 61, 199223.CrossRefGoogle Scholar
Wassmann, R. & Dobermann, A. (2007). Climate change adaptation through rice production in regions with high poverty levels. Ejournal of SAT Agricultural Research 4. Available online at: http://www.icrisat.org/journal/SpecialProject/sp8.pdf (verified 8 Feb 2011).Google Scholar
Wassmann, R., Jagadish, S. V. K., Heuer, S., Ismail, A., Redona, E., Serraj, R., Singh, R. K., Howell, G., Pathak, H. & Sumfleth, K. (2009 a). Climate change affecting rice production: the physiological and agronomic basis for possible adaptation strategies. Advances in Agronomy 101, 59122.CrossRefGoogle Scholar
Wassmann, R., Jagadish, S. V. K., Sumfleth, K., Pathak, H., Howell, G., Ismail, A., Serraj, R., Redona, E., Singh, R. K. & Heuer, S. (2009 b). Regional vulnerability of climate change impacts on Asian rice production and scope for adaptation. Advances in Agronomy 102, 91133.CrossRefGoogle Scholar
Watanabe, T. & Kume, T. (2009). A general adaptation strategy for climate change impacts on paddy cultivation: special reference to the Japanese context. Paddy and Water Environment 7, 313320.CrossRefGoogle Scholar
Weerakoon, W. M. W., Maruyama, A. & Ohba, K. (2008). Impact of humidity on temperature-induced grain sterility in rice (Oryza sativa L). Journal of Agronomy and Crop Science 194, 135140.CrossRefGoogle Scholar
Yamanouchi, U., Yano, M., Lin, H., Ashikari, M. & Yamada, K. (2002). A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein. Proceedings of the National Academy of Sciences, USA 99, 75307535.CrossRefGoogle ScholarPubMed
Yan, C., Ding, Y., Wang, Q., Liu, Z., Li, G., Muhammad, I. & Wang, S. (2010). The impact of relative humidity, genotypes and fertilizer application rates on panicle, leaf temperature, fertility and seed setting of rice. Journal of Agricultural Science, Cambridge 148, 329339.CrossRefGoogle Scholar
Yin, X., Kroff, M. J. & Goudriann, J. (1996). Differential effects of day and night temperature on development to flowering in rice. Annals of Botany 77, 203213.CrossRefGoogle Scholar
Yokotani, N., Ichikawa, T., Kondou, Y., Matsui, M., Hirochika, H., Iwabuchi, M. & Oda, K. (2008). Expression of rice heat stress transcription factor OsHsfA2e enhances tolerance to environmental stresses in transgenic Arabidopsis. Planta 227, 957967.CrossRefGoogle ScholarPubMed
Yoshida, S. (1978). Tropical Climate and its Influence on Rice. IRRI Research Paper Series 20. Los Baños, The Philippines: IRRI.Google Scholar
Yoshida, S. (1981). Fundamentals of Rice Crop Science. Los Baños, The Philippines: IRRI.Google Scholar
Yoshida, S., Satake, T. & Mackill, D. S. (1981). High Temperature Stress in Rice. IRRI Research Paper Series 67. Los Baños, The Philippines: IRRI.Google Scholar
Yu, K., Chen, G. & Patrick, W. H. Jr (2004). Reduction of global warming potential contribution from a rice field by irrigation, organic matter, and fertilizer management. Global Biogeochemical Cycles 18, doi: 10.1029/2004GB002251.CrossRefGoogle Scholar
Zeng, X. C., Zhou, X., Zhang, W., Murofushi, N., Kitahara, T. & Kamuro, Y. (1999). Opening of rice floret in rapid response to methyl jasmonate. Journal of Plant Growth Regulation 18, 153158.CrossRefGoogle ScholarPubMed
Zhang, G. L., Chen, L. Y., Xiao, G. Y., Xiao, Y. H., Chen, X. B. & Zhang, S. T. (2009). Bulked segregant analysis to detect QTL related to heat tolerance in rice (Oryza sativa L.) using SSR markers. Agricultural Sciences in China 8, 482487.CrossRefGoogle Scholar
Zhu, Q. H., Ramm, K., Shivakkumar, R., Dennis, E. S. & Upadhyaya, N. M. (2004). The ANTHER INDEHISCENCE1 gene encoding a single MYB domain protein is involved in anther development in rice. Plant Physiology 135, 15141525.CrossRefGoogle ScholarPubMed
Ziska, L. H. & Manalo, P. A. (1996). Increasing night temperature can reduce seed set and potential yield of tropical rice. Australian Journal of Plant Physiology 23, 791794.Google Scholar
Ziska, L. H., Manalo, P. A. & Ordonez, R. A. (1996). Intraspecific variation in the response of rice (Oryza sativa L.) to increased CO2 and temperature: growth and yield response of 17 cultivars. Journal of Experimental Botany 47, 13531359.CrossRefGoogle Scholar
Ziska, L. H. & Teramura, A. H. (1992). Intraspecific variation in the response of rice (Oryza sativa L.) to increased CO2 – photosynthetic, biomass and reproductive characteristics. Physiologia Plantarum 84, 269274.CrossRefGoogle Scholar