Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-20T00:41:11.246Z Has data issue: false hasContentIssue false

Impact of climate change on harvest security and biomass yield of two timothy ley harvesting systems in Norway

Published online by Cambridge University Press:  14 January 2013

T. PERSSON*
Affiliation:
Grassland and Landscape Division, Norwegian Institute for Agricultural and Environmental Research, 4353 Klepp Stasjon, Norway
M. HÖGLIND
Affiliation:
Grassland and Landscape Division, Norwegian Institute for Agricultural and Environmental Research, 4353 Klepp Stasjon, Norway
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

Predicted future climate changes in northern Europe include increased air temperature and altered precipitation patterns. There is a lack of knowledge about potential climate change effects on the biomass yield and security of agricultural crops. The present study determined the potential impact of future climate change on the yield and harvest security of timothy (Phleum pratense L.). Harvest security was assessed using data on accumulated precipitation and the length of dry spell period within the 7 days after cutting. Timothy production as a function of weather, soil and management practices was simulated using the LINGRA model for the periods 1961–90, 2046–65 and 2080–99, and the locations Apelsvoll, Ås, Sola, Tromsø and Værnes in Norway and harvest systems with 600 and 800 °C days between cuts. One hundred years of daily weather data were generated with the LARS-WG tool, using future daily weather data sets based on 12 Global Climate Models. Total seasonal biomass yield varied between 690 g dry matter (DM)/m2 for the 800 °C days harvesting regime in the period 1961–90 at Tromsø and 1548 g DM/m2 for the same harvesting regime in the period 2046–65 at Sola. In general, the biomass was higher in the two future periods than in 1961–90 across locations and harvesting regimes, mainly owing to more cuts per season. Accumulated precipitation after cutting varied between 12·2 mm after the first cut for the 600 °C days harvesting regime in the period 1961–90 at Værnes and 42·5 mm after the fourth cut in the 800 °C days harvesting regime in the period 2080–99 at Sola. The longest duration of dry spell 7 days after pre-planned harvest varied between 1·8 days after the fourth cut at Sola in the 600 °C days harvesting regime for the period 2080–99, and 3·9 days after the first cut at Ås in the 800 °C days harvesting regime for the period 2046–65. Potential consequences of these results are discussed.

Type
Climate Change and Agriculture Research Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ashikaga, K., Tamaki, H., Tanaka, T., Deguchi, K., Iida, K. & Sato, K. (2010). Effects of harvest time across maturity stages and within a day on the nutritive value in the first crop of timothy (Phleum pratense L.). Grassland Science 56, 101107.CrossRefGoogle Scholar
Batey, T. (2009). Soil compaction and soil management – a review. Soil Use and Management 25, 335345.CrossRefGoogle Scholar
Berglund, K., Berglund, O. & Gustafson Bjureus, A. (2002). Markstrukturindex – ett sätt att bedöma jordarnas fysikaliska status och odlingssystemets inverkan pa markstrukturen [Soil structure index, a method to evaluate the physical status of the soil and the effect of the farming system on soil structure]. Avdelningen för Lantbrukets Hydroteknik, Avdelningsmeddelande 02:4 Uppsala, Sweden: Sveriges Lantbruksuniveritet (in Swedish).Google Scholar
Bonesmo, H. (2000). Modelling spring growth of timothy and meadow fescue by an expolinear growth equation. Acta Agriculturae Scandinavica Section B: Soil and Plant Science 49, 216224.Google Scholar
Bonesmo, H. & Belanger, G. (2002). Timothy yield and nutritive value by the CATIMO model: I. Growth and nitrogen. Agronomy Journal 94, 337345.Google Scholar
Colleuille, H., Haugen, L. E. & Øverlie, T. (2007). Vann i jord- Simulering av vann- og energibalanse på Kise markvannstasjon, Hedmark. NVE rapport 8. Oslo: Norges vassdrags og energidirektorat.Google Scholar
Daugstad, K. (2011). Grindstad timotei – frå gardsstamme til hovedsort i Sør-Norge. Ås: Skog og Landskap. Availabile from: http://www.skogoglandskap.no/Artsbeskrivelser/timotei (verified 12 December 2011).Google Scholar
Eriksson, J., Andersson, A. & Andersson, R. (1991). Åkermarkens matjordstyper [Texture of agricultural topsoils in Sweden]. Stockholm, Sweden: Naturvårdsverket, Rapport 4955, (in Swedish).Google Scholar
Hallegatte, S., Przyluski, V. & Vogt-Schilb, A. (2011). Building world narratives for climate change impact, adaptation and Vulnerability analyses. Nature Climate Change 1, 151155.Google Scholar
Hamza, M. A. & Anderson, W. K. (2005). Soil compaction in cropping systems: a review of the nature, causes and possible solutions. Soil and Tillage Research 82, 121145.Google Scholar
Hansen-Bauer, I., Drange, H., Førland, E. J., Roald, L. A., Børsheim, K. Y., Hisdal, H., Lawrence, D., Nesje, A., Sandven, S., Sorteberg, A., Sundby, S., Vasskog, K. & Ådlandsvik, B. (2009). Klima i Norge 2100 Bakgrunnsmateriale til NOU Klimatilpasning. Oslo: Norsk klimasenter.Google Scholar
Haugen, J. E. & Iversen, T. (2008). Response in extremes of daily precipitation and wind from a downscaled multi-model ensemble of anthropogenic global climate change scenarios. Tellus A 60, 411426.Google Scholar
Höglind, M., Hanslin, H. M. & Van Oijen, M. (2005). Timothy regrowth, tillering and leaf area dynamics following spring harvest at two growth stages. Field Crops Research 93, 5163.Google Scholar
Höglind, M., Schapendonk, A. H. C. M. & Van Oijen, M. (2001). Timothy growth in Scandinavia: combining quantitative information and simulation modelling. New Phytologist 151, 355367.Google Scholar
Höglind, M., Thorsen, S. M. & Semenov, M. A. (2012). Assessing uncertainties in impact of climate change on grass production in Northern Europe using ensembles of global climate models. Agricultural and Forest Meteorology, doi: 10.1016/j.agrformet.2012.02.010.Google Scholar
Holden, N. M. & Brereton, A. J. (2002). An assessment of the potential impact of climate change on grass yield in Ireland over the next 100 years. Irish Journal of Agricultural and Food Research 41, 213226.Google Scholar
Hurtado-Uria, C., Hennessy, D., Shalloo, L., Schulte, R. P. O., Delaby, L. & O'Connor, D. (2012). Evaluation of three grass growth models to predict grass growth in Ireland. Journal of Agricultural Science, Cambridge. DOI: http://dx.doi.org/10.1017/S0021859612000317.Google Scholar
Iqbal, M. A., Eitzinger, J., Formayer, H., Hassan, A. & Heng, L. K. (2011). A simulation study for assessing yield optimization and potential for water reduction for summer-sown maize under different climate change scenarios. Journal of Agricultural Science, Cambridge 149, 129143.Google Scholar
Izaurralde, R. C., Thomson, A. M., Morgan, J. A., Fay, P. A., Polley, H. W. & Hatfield, J. L. (2011). Climate impacts on agriculture: implications for forage and rangeland production. Agronomy Journal 103, 371381.Google Scholar
Jing, Q., Bélanger, G., Baron, V., Bonesmo, H., Virkajärvi, P. & Young, D. (2012). Regrowth simulation of the perennial grass timothy. Ecological Modelling 232, 6477.Google Scholar
Lobell, D. B., Burke, M. B., Tebaldi, C., Mastrandrea, M. D., Falcon, W. P. & Naylor, R. L. (2008). Prioritizing climate change adaptation needs for food security in 2030. Science 319, 607610.Google Scholar
Merry, R. J., Jones, R. & Theodoru, M. K. (2000). The conservation of grass. In Grass. Its Production and Utilization, 3rd edn (Ed. Hopkins, A.), pp. 196228. Oxford, UK: Blackwell Science.Google Scholar
Nakićenović, N., Alcamo, J., Davis, G., de Vries, B., Fenhann, J., Gaffin, S., Gregory, K., Grübler, A., Jung, T. Y., Kram, T., Lebre La Rovere, E., Michaelis, L., Mori, S., Morita, T., Pepper, W., Pitcher, H., Price, L., Riahi, K., Roehrl, A., Rogner, H.-H., Sankovski, A., Schlesinger, M., Shukla, P., Smith, S., Swart, R., van Rooijen, S., Victor, N. & Dadi, Z. (2000). Special Report on Emission Scenarios. Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press.Google Scholar
Nordheim-Viken, H., Volden, H. & Jorgensen, M. (2009). Effects of maturity stage, temperature and photoperiod on growth and nutritive value of timothy (Phleum pratense L.). Animal Feed Science and Technology 152, 204218.Google Scholar
Olesen, J. E. & Bindi, M. (2002). Consequences of climate change for European agricultural productivity, land use and policy. European Journal of Agronomy 16, 239262.Google Scholar
Orosz, S. & Szűcsné-Péter, J., Owens, V. & Bellus, Z. (2008). Recent developments in harvesting and conservation technology for feed and biomass production of perennial forage crops. Grassland Science in Europe 13, 529548.Google Scholar
Pachauri, R. K. & Reisinger, A. (2007). Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press.Google Scholar
Parsons, A. J. (1988). The effects of season and management on the growth of grass swards. In The Grass Crop: The Physiological Basis of Production (Eds Jones, M. B. & Lazenby, A.), pp. 129177. London: Chapman and Hall.Google Scholar
Riedo, M., Grub, A., Rosset, M. & Fuhrer, J. (1998). A pasture simulation model for dry matter production, and fluxes of carbon, nitrogen, water and energy. Ecological Modelling 105, 141183.Google Scholar
Riedo, M., Gyalistras, D. & Fuhrer, J. (2000). Net primary production and carbon stocks in differently managed grasslands: simulation of site-specific sensitivity to an increase in atmospheric CO2 and to climate change. Ecological Modelling 134, 207227.CrossRefGoogle Scholar
Riedo, M., Gyalistras, D. & Fuhrer, J. (2001). Pasture responses to elevated temperature and doubled CO2 concentration: assessing the spatial pattern across an alpine landscape. Climate Research 17, 1931.Google Scholar
Riesinger, P. (2010). Agronomic Challenges for Organic Crop Husbandry. Ph.D. Thesis, University of Helsinki, Helsinki, Finland.Google Scholar
Rodriguez, D., Van Oijen, M. & Schapendonk, A. H. C. M. (1999). LINGRA-CC: a sink-source model to simulate the impact of climate change and management on grassland productivity. New Phytologist 144, 359368.Google Scholar
SAS Institute Inc (2008). SAS for Windows. Cary, NC: SAS Institute.Google Scholar
Schapendonk, A., Stol, W., van Kraalingen, D. W. G. & Bouman, B. A. M. (1998). LINGRA, a sink/source model to simulate grassland productivity in Europe. European Journal of Agronomy 9, 87100.Google Scholar
Semenov, M. A. (2008). Simulation of extreme weather events by a stochastic weather generator. Climate Research 35, 203212.Google Scholar
Semenov, M. A. & Stratonovitch, P. (2010). Use of multi-model ensembles from global climate models for assessment of climate change impacts. Climate Research 41, 114.Google Scholar
Solomon, S., Quin, D., Manning, M., Marquis, M., Averyt, K., Tignor, M. M. B., LeRoy Miller, H. & Chen, Z. (2007). Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press.Google Scholar
Soussana, J.-F., Graux, A.-I. & Tubiello, F. N. (2010). Improving the use of modelling for projections of climate change impacts on crops and pastures. Journal of Experimental Botany 61, 22172228.Google Scholar
Sveistrup, T. E. & Haraldsen, T. K. (1997). Effects of soil compaction on root development of perennial grass leys in northern Norway. Grass and Forage Science 52, 381387.CrossRefGoogle Scholar
Thorsen, S. M. & Höglind, M. (2010). Assessing winter survival of forage grasses in Norway under future climate scenarios by simulating potential frost tolerance in combination with simple agroclimatic indices. Agricultural and Forest Meteorology 150, 12721282.Google Scholar
Topp, C. F. E. & Doyle, C. J. (1996). Simulating the impact of global warming on milk and forage production in Scotland: 1. The effects on dry-matter yield of grass and grass-white clover swards. Agricultural Systems 52, 213242.Google Scholar
Tubiello, F. N., Soussana, J.-F. & Howden, S. M. (2007). Crop and pasture response to climate change. Proceedings of the National Academy of Sciences of the United States of America 104, 1968619690.Google Scholar
van Oijen, M., Höglind, M., Hanslin, H. M. & Caldwell, N. (2005). Process-based modeling of timothy regrowth. Agronomy Journal 97, 12951303.Google Scholar
Vucetic, V. (2011). Modelling of maize production in Croatia: present and future climate. Journal of Agricultural Science, Cambridge 149, 145157.Google Scholar
White, J. W., Hoogenboom, G., Kimball, B. A. & Wall, G. W. (2011). Methodologies for simulating impacts of climate change on crop production. Field Crops Research 124, 357368.Google Scholar
Wilkins, P. W. & Humphreys, M. O. (2003). Progress in breeding perennial forage grasses for temperate agriculture. Journal of Agricultural Science, Cambridge 140, 129150.Google Scholar