Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T20:09:06.624Z Has data issue: false hasContentIssue false

Imazamox dissipation in two rice management systems

Published online by Cambridge University Press:  22 July 2016

M. MILAN*
Affiliation:
Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Sezione di Agronomia, Università di Torino, Largo Paolo Braccini 2, 10095 Grugliasco (Torino), Italy
A. FERRERO
Affiliation:
Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Sezione di Agronomia, Università di Torino, Largo Paolo Braccini 2, 10095 Grugliasco (Torino), Italy
S. FOGLIATTO
Affiliation:
Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Sezione di Agronomia, Università di Torino, Largo Paolo Braccini 2, 10095 Grugliasco (Torino), Italy
F. DE PALO
Affiliation:
Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Sezione di Agronomia, Università di Torino, Largo Paolo Braccini 2, 10095 Grugliasco (Torino), Italy
F. VIDOTTO
Affiliation:
Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Sezione di Agronomia, Università di Torino, Largo Paolo Braccini 2, 10095 Grugliasco (Torino), Italy
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

The current study focuses on the dissipation pattern of imazamox (2-[(RS)-4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl]-5-methoxymethylnicotinic acid) in a soil–water environment under the two most adopted rice management systems in Europe, conventional water seeding and dry-seeding. Changes in imazamox concentrations were studied over time in topsoil, field water, irrigation water, outlet water and ground water. The study was performed from 2010 to 2011 in one of the most important rice growing areas of Europe (Vercelli, Northwest Italy). Imazamox dissipated rapidly in both the water and soil environments. In soil, imazamox half-life ranged from 2·2 to 3·3 days in 2010 and from 2·2 to 3·1 days in 2011. In paddy water, imazamox dissipated rapidly and no important differences among the management systems were found. In addition, the study showed that despite the short half-life of imazamox, the herbicide might be transported from treated fields in outlet waters by means of floodgates. The highest concentrations in outlet waters were found in the conventional water-seeded system, at the sampling site close to herbicide spraying. Imazamox residues were even found in inlet waters, suggesting discharge of the herbicide from paddies located upstream or drift during spraying. Imazamox residues in ground waters were always below the quantification limit. Overall, the low imazamox persistence observed during the 2-year study did not allow important differences between the two systems to be revealed. To reduce imazamox discharge from treated fields in the first days after spraying, a useful practice might be to keep water inside the fields for at least a week after spraying.

Type
Crops and Soils Research Papers
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Accinelli, C., Screpanti, C. & Vicari, A. (2005). Influence of flooding on the degradation of linuron, isoproturon and metolachlor in soil. Agronomy for Sustainable Development 25, 401406.Google Scholar
Aichele, T. M. & Penner, D. (2005). Adsorption, desorption, and degradation of imidazolinones in soil. Weed Technology 19, 154159.Google Scholar
Baer, U. & Calvet, R. (1999). Fate of soil applied herbicides: experimental data and prediction of dissipation kinetics. Journal of Environmental Quality 28, 17651777.Google Scholar
Ball, D. A., Yenish, J. P. & Alby, T. (2003). Effect of imazamox soil persistence on dryland rotational crops. Weed Technology 17, 161165.Google Scholar
Basham, G., Lavy, T. L., Oliver, L. R. & Scott, H. D. (1987). Imazaquin persistence and mobility in three Arkansas soils. Weed Science 35, 576582.Google Scholar
BCPC (2012). The Pesticide Manual. A World Compendium. Alton, UK: The British Crop Protection Council.Google Scholar
Bouman, B. A. M., Humphreys, E., Tuong, T. P. & Barker, R. (2007). Rice and water. Advances in Agronomy 92, 187237.Google Scholar
Bresnahan, G., Dexter, A., Koskinen, W. & Lueschen, W. (2002). Influence of soil pH-sorption interactions on the carry-over of fresh and aged soil residues of imazamox. Weed Research 42, 4551.Google Scholar
Cantwell, J. R., Liebl, R. A. & Slife, F. W. (1989). Biodegradation characteristics of imazaquin and imazethapyr. Weed Science 37, 815819.Google Scholar
Capri, E. (2008). Water resource contamination in Italian paddy areas. In Pesticide Risk Assessment in Rice Paddies. Theory and Practice (Eds Capri, E. & Karzoupas, D. G.), pp. 5966. Amsterdam, The Netherlands: Elsevier.Google Scholar
Castro, T. F. & Yoshida, T. (1971). Degradation of organochlorine insecticides in flooded soils in the Philippines. Journal of Agricultural and Food Chemistry 19, 11681170.Google Scholar
Cessna, A. J., Elliott, J. A. & Bailey, J. (2012). Leaching of three imidazolinone herbicides during sprinkler irrigation. Journal of Environmental Quality 41, 882892.Google Scholar
Cobucci, T., Prates, H. T., Falcão, C. L. M. & Rezende, M. M. V. (1998). Effect of imazamox, fomesafen, and acifluorfen soil residue on rotational crops. Weed Science 46, 258263.Google Scholar
Comoretto, L., Arfib, B., Talva, R., Chauvelon, P., Pichaud, M., Chiron, S. & Höhener, P. (2008). Runoff of pesticides from rice fields in the Ile de Camargue (Rhöne river delta, France): field study and modeling. Environmental Pollution 151, 486493.Google Scholar
De Campos, A. B., Mamedov, A. I. & Huang, C. H. (2009). Short-term reducing conditions decrease soil aggregation. Soil Chemistry 73, 550559.Google Scholar
Diarra, A., Smith, R. J. Jr & Talbert, R. E. (1985). Interference of red rice (Oryza sativa) with rice (O. sativa). Weed Science 33, 644649.Google Scholar
ENR (2014). Superfici Coltivate a Riso 2014. Milan, Italy: Ente Nazionale Risi.Google Scholar
ENVIRON (2012). Screening-level Ecological Risk Assessment of the Proposed Use of the Herbicide Imazamox to Control Invasive Japanese Eelgrass (Zostera japonica) in Willapa Bay, Washington State. Seattle, Washington: ENVIRON International Corporation.Google Scholar
EPA (1997). Pesticide Fact Sheet – Imazamox. Washington, DC: United States Environmental Protection Agency, Office of Prevention, Pesticides and Toxic Substances. Available from: https://www3.epa.gov/pesticides/chem_search/reg_actions/registration/fs_PC-129171_22-May-97.pdf (verified 1 March 2016).Google Scholar
European Commission (2002). Review Report for the Active Substance Imazamox. Brussels: Health & Consumer Protection Directorate-General, European Commission. Available from: http://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/?event=activesubstance.ViewReview&id=330 (verified 1 March 2016).Google Scholar
Ferrero, A. (2003). Weedy rice, biological features and control. In Weed Management for Developing Countries, Addendum 1 (Ed. Labrada, R.), pp. 89107. FAO Plant Production and Protection Paper 120 Add. 1. Rome: FAO.Google Scholar
Ferrero, A. & Tinarelli, A. (2008). Rice cultivation in the E.U. Ecological conditions and agronomical practices. In Pesticide Risk Assessment in Rice Paddies: Theory and Practice (Eds Capri, E. & Karzoupas, D. G.), pp. 224. Amsterdam, The Netherlands: Elsevier.Google Scholar
Ferrero, A., Milan, M., Fogliatto, S., De Palo, F. & Vidotto, F. (2016). Ruolo della gestione dell'acqua in risaia nella mitigazione del rischio di contaminazione delle acque superficiali da prodotti fitosanitari (Water management in rice for mitigating the risk of contamination of surface waters by herbicides). In Atti Giornate Fitopatologiche 2, pp. 37–46. Chianciano Terme, 8–11 March 2016. Bologna, Italy: CLUEB (Cooperativa Libraria Universitaria Editrice Bologna).Google Scholar
Griffini, O., Bao, M. L., Barbieri, C., Burrini, D. & Pantani, F. (1997). Occurrence of pesticides in the Arno river and in potable water – a survey of the period 1992–1995. Bulletin of Environmental Contamination and Toxicology 59, 202209.Google Scholar
Gyldenkærne, S., Secher, B. J. M. & Nordbo, E. (1999). Ground deposit of pesticides in relation to the cereal canopy density. Pesticide Science 55, 12101216.Google Scholar
Halcomb, M. & Fare, D. (2012). Soil pH Explained. Knoxville, TN, USA: University of Tennessee.Google Scholar
Harir, M., Frommberger, M., Gaspar, A., Martens, D., Kettrup, A., Azzouzi, M. & Schmitt-Kopplin, P. (2007). Characterization of imazamox degradation by-products by using liquid chromatography mass spectrometry and high-resolution Fourier transform ion cyclotron resonance mass spectrometry. Analytical and Bioanalytical Chemistry 389, 14591467.Google Scholar
Hildebrandt, A., Guillamón, M., Lacorte, S., Tauler, R. & Barceló, D. (2008). Impact of pesticides used in agriculture and vineyards to surface and groundwater quality (North Spain). Water Research 42, 33153326.Google Scholar
Johnson, D. H., Shaner, D. L., Deane, J., MacKersie, L. A. & Tuxhorn, G. (2000). Time-dependent adsorption of imazethapyr to soil. Weed Science 48, 769775.Google Scholar
Lancashire, P. D., Bleiholder, H., Van Den Boom, T., Langelüddecke, P., Stauss, R., Weber, E. & Witzenberger, A. (1991). A uniform decimal code for growth stages of crops and weeds. Annals of Applied Biology 119, 561601.Google Scholar
Le Mer, J. & Roger, P. (2001). Production, oxidation, emission and consumption of methane by soils: a review. European Journal of Soil Biology 37, 2550.Google Scholar
Lewis, K. A., Tzilivakis, J., Warner, D. J. & Green, A. (2016). An international database for pesticide risk assessments and management. Human and Ecological Risk Assessment: An International Journal 22, 10501064.Google Scholar
Loux, M. M. & Reese, K. D. (1992). Effect of soil pH on adsorption and persistence of imazaquin. Weed Science 40, 490496.Google Scholar
Loux, M. M., Liebl, R. A. & Slife, F. W. (1989). Availability and persistence of imazaquin, imazethapyr, and clomazone in soil. Weed Science 37, 259267.Google Scholar
Marchesan, E., Zanella, R., De Avila, L. A., Camargo, E. R., Machado, S. L. D. O. & Macedo, V. R. M. (2007). Rice herbicide monitoring in two Brazilian rivers during the rice growing season. Scientia Agricola 64, 131137.Google Scholar
Milan, M., Vidotto, F., Piano, S., Negre, M. & Ferrero, A. (2012). Dissipation of propanil and 3,4 dichloroaniline in three different rice management systems. Journal of Environmental Quality 41, 14871496.Google Scholar
Newhart, K. L. (2002). Rice Pesticide Use and Surface Water Monitoring 2002. Report to the California Regional Water Quality Control Board. Sacramento, CA: California Environmental Protection Agency (CEPA).Google Scholar
Oerke, E. C. & Dehne, H. W. (2004). Safeguarding production – losses in major crops and the role of crop protection. Crop Protection 23, 275285.Google Scholar
Pannacci, E., Onofri, A. & Covarelli, G. (2006). Biological activity, availability and duration of phytotoxicity for imazamox in four different soils of central Italy. Weed Research 46, 243250.Google Scholar
Paris, P., Bisceglie, S., Maschio, G., Pace, E., Parisi Presicce, D. & Ursino, S. (2014). Rapporto Nazionale dei Pesticidi Nelle Acque. Dati 2011–2012, Edizione 2014. Rapporti 208/2014. Rome: ISPRA.Google Scholar
Ponnamperuma, F. N. (1984). Effects of flooding on soils. In Flooding and Plant Growth (Ed. Kozlowsky, T. T.), pp. 945. New York: Academic Press.Google Scholar
Quivet, E., Faure, R., Georges, J., Païssé, J. O., Herbreteau, B. & Lanteri, P. (2006). Photochemical degradation of imazamox in aqueous solution: influence of metal ions and anionic species on the ultraviolet photolysis. Journal of Agricultural and Food Chemistry 54, 36413645.Google Scholar
Roger, P. A. (1990). Microbiological aspects of pesticide use in wetland ricefields. In Proceedings of the Workshop: Environmental and Health Impacts of Pesticides Use in Rice Culture, pp. 1–24, Manila, Philippines: IRRI.Google Scholar
Sesia, E. (2013). Residui di Pesticidi nelle Acque Superficiali e Sotterranee in Piemonte. Torino, Italy: ARPA Piemonte. Available from: http://www.regione.piemonte.it/agri/area_tecnico_scientifica/ricerca/dwd/2013/presentazione_pesticidi.pdf (verified 1 March 2016).Google Scholar
Tan, S., Evans, R. R., Dahmer, M. L., Singh, B. K. & Shaner, D. L. (2005). Imidazolinone-tolerant crops: history, current status and future. Pest Management Science 61, 246257.Google Scholar
Ueji, M. & Inao, K. (2001). Rice paddy field herbicides and their effects on the environment and ecosystems. Weed Biology and Management 1, 7179.Google Scholar
Vischetti, C., Casucci, C. & Perucci, P. (2002). Relationship between changes of soil microbial biomass content and imazamox and benfluralin degradation. Biology and Fertility of Soils 35, 1317.Google Scholar
Watanabe, H., Nguyen, M. H. T., Souphasay, K., Vu, S. H., Phong, T. K., Tournebize, J. & Ishihara, S. (2007). Effect of water management practice on pesticide behaviour in paddy water. Agricultural Water Management 88, 132140.Google Scholar
Wauchope, R. D. & Streeth, J. E. (1987). Fate of a water soluble herbicide spray on foliage. Part I. Spray efficiency: measurement of initial deposition and absorption. Pesticide Science 19, 243252.Google Scholar