Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T02:22:37.107Z Has data issue: false hasContentIssue false

Hotspots and gaps in the world collection of subterranean clover (Trifolium subterraneum L.)

Published online by Cambridge University Press:  19 August 2014

K. GHAMKHAR*
Affiliation:
Centre for Plant Genetics and Breeding, University of Western Australia, Crawley, Western Australia, Australia Gin Silico Pty Ltd, PO Box 1159, Blackburn North, 3130 Victoria, Australia Margot Forde Forage Germplasm Centre, Forage Improvement, AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
P. G. H. NICHOLS
Affiliation:
Department of Agriculture and Food Western Australia, Bentley Delivery Centre, Western Australia, Australia School of Plant Biology, University of Western Australia, Crawley, Western Australia, Australia
W. ERSKINE
Affiliation:
Centre for Plant Genetics and Breeding, University of Western Australia, Crawley, Western Australia, Australia
R. SNOWBALL
Affiliation:
Department of Agriculture and Food Western Australia, Bentley Delivery Centre, Western Australia, Australia
M. MURILLO
Affiliation:
Servicio de Investigación y Desarrollo Tecnológico, Badajoz, Spain
R. APPELS
Affiliation:
Centre for Comparative Genomics, Murdoch University, Murdoch, Western Australia, Australia
M. H. RYAN
Affiliation:
School of Plant Biology, University of Western Australia, Crawley, Western Australia, Australia
*
*To whom all correspondence should be addressed. Email: [email protected] or [email protected]

Summary

Subterranean clover (Trifolium subterraneum L.) is the most important annual pasture legume in the winter-dominant rainfall areas of Southern Australia. Systematic germplasm collections of subterranean clover from its centre of origin have been made since the 1950s, particularly by Australian scientists, in order to broaden the genetic base of the species. The present study reports on a meta-analysis of the distribution of the world collection of subterranean clovers and their relationships to eco-geographic variables of the collection sites in their native habitat. Diversity hotspots (areas rich in number of accessions and containing a high diversity of sub-species) and also gaps (areas with particular traits un- or under-represented in collections) were identified. This was achieved using a stratified data system to evaluate eco-geographical and agro-morphological data which incorporated three tiers of information for the subterranean clover collection: (1) information from each collection site, including ecological data; (2) information on the phenotypic diversity within each collection site; and (3) plant agro-morphological data from each sample grown under controlled conditions. Correlations were found between some eco-geographic conditions and agronomic performance. These included correlations between latitude and flowering time, mean temperature in winter and winter productivity and precipitation in summer and seed dormancy. The present study concluded that subterranean clover versatility is greater than suggested in the past. The results of the current analysis provide a guide for future collecting missions to specific regions towards areas of maximum diversity (hotspots) and unknown diversity (gaps).

Type
Crops and Soils Research Papers
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cocks, P. S. & Ehrman, T. A. M. (1987). The geographic origin of frost tolerance in Syrian pasture legumes. Journal of Applied Ecology 24, 678683.CrossRefGoogle Scholar
Downton, M. & Brennan, T. (1980). Comparing classifications: an evaluation of several coefficients of partition agreement. Classification Society Bulletin 4, 5354.Google Scholar
Ehrman, T. & Cocks, P. S. (1990). Ecogeography of annual legumes in Syria: distribution patterns. Journal of Applied Ecology 27, 578591.CrossRefGoogle Scholar
Ehrman, T. & Cocks, P. S. (1996). Reproductive patterns in annual legume species on an aridity gradient. Vegetatio 122, 4759.CrossRefGoogle Scholar
Falling Rain Genomics, Inc. (2006). Global Gazetteer, 2·1. Palo Alto, CA, USA: Falling Rain Genomics. Available online from: http://www.fallingrain.com/world/ (accessed March 2009).Google Scholar
Forman, R. T. T. (1995). Land Mosaics: the Ecology of Landscapes and Regions. Cambridge, UK: Cambridge University press.CrossRefGoogle Scholar
Francis, C. M. & Millington, A. J. (1965). Varietal variation in the isoflavone content of subterranean clover: its estimation by a microtechnique. Australian Journal of Agricultural Research 16, 557564.CrossRefGoogle Scholar
Ghamkhar, K., Snowball, R. & Bennett, S. J. (2007). Ecogeographical studies identify diversity and potential gaps in the largest germplasm collection of bladder clover (Trifolium spumosum L.). Australian Journal of Agricultural Research 58, 728738.CrossRefGoogle Scholar
Gladstones, J. S. (1966). Naturalized subterranean clover (Trifolium subterraneum L.) in Western Australia: the strains, their distributions, characteristics, and possible origins. Australian Journal of Botany 14, 329354.CrossRefGoogle Scholar
Gladstones, J. S. & Collins, W. J. (1983). Subterranean clover as a naturalised plant in Australia. Journal of the Australian Institute of Agricultural Science 49, 191202.Google Scholar
Gladstones, J. S. & Collins, W. J. (1984). Naturalised Subterranean Clover Strains of Western Australia. Technical Bulletin no. 64. South Perth, Western Australia: Western Australian Department of Agriculture.Google Scholar
Harlan, J. R. (1975). Our vanishing genetic resources. Science 188, 618621.CrossRefGoogle ScholarPubMed
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25, 19651978.CrossRefGoogle Scholar
Hill, M. J. & Donald, G. E. (1998). Australian Temperate Pastures Database (CD-ROM). Compiled for the National Pastures Improvement Coordinating Committee. Clayton South, VIC, Australia: CSIRO.Google Scholar
Katznelson, J. (1974). Biological flora of Israel. 5. The subterranean clovers of Trifolium subsect. Calycomorphum Katzn. Trifolium subterraneum L. (sensu lato). Israel Journal of Botany 23, 69108.Google Scholar
Katznelson, J. & Morley, F. H. W. (1965). A taxonomic revision of sect. Calycomorphum of the genus Trifolium. I. The geocarpic species. Israel Journal of Botany 14, 112134.Google Scholar
McGuire, W. S. (1985). Subterranean clover. In Clover Science and Technology (Ed. Taylor, N. L.), pp. 515534. Madison, WI: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America.Google Scholar
Meilleur, B. A. & Hodgkin, T. (2004). In situ conservation of crop wild relatives: status and trends. Biodiversity and Conservation 13, 663684.CrossRefGoogle Scholar
Microsoft, C. (1999). Microsoft Encarta World Atlas. Washington, DC: Microsoft.Google Scholar
Morley, F. H. W. & Katznelson, J. (1965). Colonization in Australia by Trifolium subterraneum L. In The Genetics of Colonizing Species (Eds Baker, H. G. & Stebbins, G. L.), pp. 269282. New York: Academic Press.Google Scholar
Nichols, P. G. H., Barbetti, M. J. & Collins, W. J. (1996). Registered Cultivars of Subterranean Clover – their Characteristics, Origin and Identification. Agriculture Western Australia Bulletin No. 4327. South Perth, Western Australia: Western Australian Department of Agriculture.Google Scholar
Nichols, P. G. H., Loi, A., Nutt, B. J., Evans, P. M., Craig, A. D., Pengelly, B. C., Dear, B. S., Lloyd, D. L., Revell, C. K., Nair, R. M., Ewing, M. A., Howieson, J. G., Auricht, G. A., Howie, J. H., Sandral, G. A., Carr, S. J., de Koning, C. T., Hackney, B. F., Crocker, G. J., Snowball, R., Hughes, S. J., Hall, E. J., Foster, K. J., Skinner, P. W., Barbetti, M. J. & You, M. P. (2007). New annual and short-lived perennial pasture legumes for Australian agriculture – 15 years of revolution. Field Crops Research 104, 1023.CrossRefGoogle Scholar
Nichols, P. G. H., Cocks, P. S. & Francis, C. M. (2009). Evolution over 16 years in a bulk-hybrid population of subterranean clover (Trifolium subterraneum L.) at two contrasting sites in south-western Australia. Euphytica 169, 3148.CrossRefGoogle Scholar
Nichols, P. G. H., Revell, C. K., Humphries, A. W., Howie, J. H., Hall, E. J., Sandral, G. A., Ghamkhar, K. & Harris, C. A. (2012). Temperate pasture legumes in Australia – their history, current use, and future prospects. Crop and Pasture Science 63, 691725.CrossRefGoogle Scholar
Nichols, P. G. H., Foster, K. J., Piano, E., Pecetti, L., Kaur, P., Ghamkhar, K. & Collins, W. J. (2013). Genetic improvement of subterranean clover (Trifolium subterraneum L.). 1. Germplasm, traits and future prospects. Crop and Pasture Science 64, 312346.CrossRefGoogle Scholar
Pecetti, L. & Piano, E. (2002). Variation of morphological and adaptive traits in subterranean clover populations from Sardinia (Italy). Genetic Resources and Crop Evolution 49, 189197.CrossRefGoogle Scholar
Piano, E. (1984). Preliminary observations on the structure and variability of Sardinian populations of subterranean clover. Genetica Agraria 38, 7590.Google Scholar
Piano, E., Sardara, M. & Pusceddu, S. (1982). Observations on the distribution and ecology of subterranean clover and other annual legumes in Sardinia. Rivista di Agronomia 16, 273283.Google Scholar
Piano, E., Spanu, F. & Pecetti, L. (1993). Structure and variation of subterranean clover populations from Sicily, Italy. Euphytica 68, 4351.CrossRefGoogle Scholar
Piano, E., Pecetti, L. & Carroni, A. M. (1996). Climatic adaptation in subterranean clover populations. Euphytica 92, 3944.CrossRefGoogle Scholar
Plucknett, D. L., Smith, N. J. H., Williams, J. T. & Anishetty, N. M. (1983). Crop germplasm conservation and developing countries. Science 220, 163169.CrossRefGoogle ScholarPubMed
Revell, C. K., Ewing, M. A. & Nutt, B. J. (2012). Breeding and farming system opportunities for pasture legumes facing increasing climate variability in the south-west of Western Australia. Crop and Pasture Science 63, 840847.CrossRefGoogle Scholar
Richardson, A. E., Henderson, A. P., James, G. S. & Simpson, R. J. (1988). Consequences of soil acidity and the effect of lime on the nodulation of Trifolium subterraneum L. growing in an acid soil. Soil Biology and Biochemistry 20, 439445.CrossRefGoogle Scholar
Rohlf, F. J. (2004). NTSYSpc: Numerical Taxonomy and Multivariate Analysis System v. 2.2. Port Jefferson, New York: Applied Biostatistics, Inc.Google Scholar
Smetham, M. L. (2003). A review of subterranean clover (Trifolium subterraneum L.): its ecology, and use as a pasture legume in Australasia. Advances in Agronomy 79, 303350.CrossRefGoogle Scholar
Soule, M. E. & Wilcox, B. A. (1980). Conservation Biology: an Evolutionary-Ecological Perspective. Sunderland, MA, USA: Sinauer Associates Inc.Google Scholar
Wilkes, G. & Williams, J. T. (1983). Current status of crop plant germplasm. CRC Critical Reviews in Plant Science 1, 133181.CrossRefGoogle Scholar
WorldClim (2006). WorldClim – Global Climate Data Ver. 1·4. Available online from: http://www.worldclim.org/ (accessed June 2009).Google Scholar
Zohary, M. & Heller, D. (1984). The Genus Trifolium. Jerusalem, Israel: Israel Academy of Sciences and Humanities.Google Scholar