Published online by Cambridge University Press: 27 March 2009
Lentils (Lens culinaris Medik.) were sown on eight sowing dates from April to November in two seasons in Canterbury, New Zealand. In 1984/85, six sowing dates were combined with two lentil cultivars (Olympic and Titore) and two irrigation treatments. In 1985/86, Titore was sown on two dates, with four irrigation treatments. An additional experiment grown under rain shelters examined the response of Titore to four irrigation regimes. The 1984/85 season was dry and rainfall was only 70% of the long-term mean. In this season, seed yield was high, 3·3 t/ha from the May sowing. The 1985/86 season was wetter than average and seed yields were lower, ranging from 0·6 to 1·5 t/ha. Under rain shelters, seed yield ranged from the equivalent of 0·32 to 2·5 t/ha.
Sowing date had the most marked effect on seed yield. In the 1984/85 season, all autumn and winter sowings yielded 2·4–3·3 t/ha, whereas the spring sowings yielded 0·5–1·5 t/ha. In 1985/86, unirrigated plots from the May sowing yielded 1·5 t/ha, whereas all other plots yielded c. 0·8 t/ha.
Generally, the small-seeded cultivar Titore outyielded Olympic. Dry matter (DM) accumulation followed similar trends to seed yield. Seasonal DM accumulation followed a sigmoidal curve. Functional growth analysis indicated that plants from autumn/winter sowings had a weighted mean absolute growth rate of 110–171 kg/ha per day, whereas spring-sown plants grew at 96–137 kg/ha per day. The maximum crop growth rate was 230 kg/ha per day in the July 1984 sowing.
There was little positive response to irrigation in both seasons. Under rain shelters, there was a linear increase in both dry matter and seed production with increased total water. Fully irrigated plants produced 1·27 g DM and 0·72 g seed/m2 per mm of water received.
In the field experiments there was no relationship between maximum potential soil moisture deficit (D) and yield. Under rain shelters, however, there was a linear relationship which indicated a limiting deficit of c. 130 mm. The relationship showed that, for each millimetre increase in D above D1, 0·39% of the maximum yield was lost.
Under the rain shelters, there was a strong relationship between yield and actual evapotranspiration (ET). Water-use efficiency (WUE) ranged from 2·81 g DM/m2 per mm ET in unirrigated plots to 0·69 g seed/m2 per mm ET.
The results showed that lentil growers in Canterbury, and presumably in similar environments, are unlikely to benefit from irrigating their crops. In such environments, lentils appear to be an ideal dryland crop.