Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-08T09:17:55.887Z Has data issue: false hasContentIssue false

Genetic variation at five microsatellite loci in four breeds of cattle

Published online by Cambridge University Press:  27 March 2009

J. J. Arranz
Affiliation:
Departamento de Production Animal, Universidad de León, E-24071 Leon, Spain
Y. Bayón
Affiliation:
Departamento de Production Animal, Universidad de León, E-24071 Leon, Spain
F. San Primitivo
Affiliation:
Departamento de Production Animal, Universidad de León, E-24071 Leon, Spain

Summary

Genetic variation was analysed in cattle from the central area of Spain, in 1993, for the following microsatellite loci: CYP21, BOVTAU, ETH131, ILSTS002 and ILSTS005. The breeds studied were Morucha (n = 104), Sayaguesa (n = 60), Brown Swiss (n = 90) and two different populations of Avilena-Negra Iberica (n = 134 and n = 104). Morucha cattle showed the largest number of different alleles (66), whereas Sayaguesa exhibited the lowest (38). Values of number of observed alleles, gene diversity, polymorphism information content and effective number of alleles indicated that the microsatellite showing the highest variability was CYP21, followed by ETH131, ILSTS002, BOVTAU and ILSTS005.

Type
Animals
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arranz, J. J., Bayón, Y. & San Primitivo, F. (1994). The distribution of potassium and sodium concentrations in the erythrocytes of some breeds of cattle. Journal of Animal Breeding and Genetics 111, 228233.CrossRefGoogle ScholarPubMed
Avon, L. (1990). Conservation and management of genetic resources of western Europe: cattle breeds. In Genetic Conservation of Domestic Livestock (Ed. Anderson, L.), pp. 4548. Wallingford: CAB International.Google Scholar
Botstein, D., White, R. L., Skolnick, M. & Davis, R. W. (1980). Construction of a genetic linkage map in human using restriction fragment length polymorphisms. American Journal of Human Genetics 32, 314331.Google ScholarPubMed
Brezinsky, L, Kemp, S. J. &Teale, A. J. (1993). ILSTS005: a polymorphic bovine microsatellite. Animal Genetics 24, 73.Google ScholarPubMed
Callen, D. F., Thompson, A. D., Shen, Y., Phillips, H. A., Richards, R. I., Mulley, J. C. & Sutherland, G. R. (1993). Incidence and origin of “ null” alleles in the (AC)n microsatellite markers. American Journal of Human Genetics 52, 922927.Google Scholar
Chakraborty, R., Fornage, M., Gueguen, R. & Boerwinkle, E. (1991). Population genetics of five hypervariable loci: Analysis of PCR based VNTR polymorphism within a population. In DNA Fingerprinting: Approaches and Applications (Eds Burke, T., Dolf, G., Jeffreys, A. J. & Wolff, R.), pp. 127143. Basel: Brikhäuser Verlag.CrossRefGoogle Scholar
Edwards, A., Hammond, H. A., Jin, L., Caskey, C. T. & Chakraborty, R. (1992). Genetic variation at five trimeric and tetrameric tandem repeat loci in four human population groups. Genomics 12, 241253.CrossRefGoogle ScholarPubMed
Fries, R., Eggen, A. & Strazinger, G. (1990). The bovine genome contains polymorphic microsatellites. Genomics 8, 403406.CrossRefGoogle ScholarPubMed
Fries, R., Eggen, A. & Womack, J. E. (1993). The bovine genome map. Mammalian Genome 4, 405428.CrossRefGoogle ScholarPubMed
Grobet, L. (1993). Diagnostics ge'nomiques chez les animaux domesliques. PhD thesis, University of Liège.Google Scholar
Hedrick, P. W. (1983). Genetics of Populations. New York: Van Nostrand Reinhold.Google Scholar
Kemp, S. J., Brezinsky, L. &Teale, A. J. (1992). ILSTS002: a polymorphic bovine microsatellite. Animal Genetics 23, 184.CrossRefGoogle ScholarPubMed
Machugh, D. E., Loftus, R. N., Bradley, D. G., Sharp, P. M. & Cunningham, P. (1994). Microsatellite DNA variation within and among European cattle breeds. Proceedings of the Royal Society of London B 256, 2531.Google ScholarPubMed
Moazami-Goudarzi, K., Vaiman, D., Mercier, D., Grohs, C., Furet, J. P., Leveziel, H. & Martin, P. (1994). Emploi de microsatellites pour l'analyse de la diversitè génétique des races bovines francaises: premiers résultats. Genetics, Selection and Evolution 26, 155s165s.CrossRefGoogle Scholar
Moore, S. S., Barendse, K. T., Berger, S. M. & Hetzel, J. S. (1992). Bovine and ovine DNA microsatellites from the EMBL and GENEBANK databases. Animal Genetics 23, 463467.CrossRefGoogle Scholar
Nei, M. (1987). Molecular Evolutionary Genetics. New York: Columbia University Press.CrossRefGoogle Scholar
Steffen, P., Eggen, A., Dietz, A. B., Womack, J. E., Stranzinger, G. & Fries, R. (1993). Isolation and mapping of polymorphic microsatellites in cattle. Animal Genetics 24, 121134.CrossRefGoogle ScholarPubMed
Tautz, D. (1989). Hypervariability of simple sequences as a general source of polymorphic DNA markers. Nucleic Acids Research 17, 64636471.CrossRefGoogle ScholarPubMed
Tautz, D. & Schlötterer, C. (1994). Simple sequences. Current Opinion in Genetics and Development 4, 832837.CrossRefGoogle ScholarPubMed
Weber, J. L. & May, P. (1989). Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. American Journal of Human Genetics 44, 388396.Google ScholarPubMed