Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-08T23:35:17.376Z Has data issue: false hasContentIssue false

Genetic parameters and non-genetic influences related to birth weight in farmed white-tailed deer

Published online by Cambridge University Press:  04 September 2013

G. M. PARRA-BRACAMONTE*
Affiliation:
Centro de Biotecnología Genómica – Instituto Politécnico Nacional, Boulevard del Maestro SN. Esq. Elías Piña, Col. Narciso Mendoza. C.P. 88710, Reynosa, Tamaulipas, México
X. F. DE LA ROSA-REYNA
Affiliation:
Centro de Biotecnología Genómica – Instituto Politécnico Nacional, Boulevard del Maestro SN. Esq. Elías Piña, Col. Narciso Mendoza. C.P. 88710, Reynosa, Tamaulipas, México
N. TREVIÑO-MARTÍNEZ
Affiliation:
Asociación Nacional de Criadores de Cérvidos de México A.G. Canales No. 3841, Col. Centro C.P. 88000, Nuevo Laredo, Tamaulipas, México
W. ARELLANO-VERA
Affiliation:
Centro de Biotecnología Genómica – Instituto Politécnico Nacional, Boulevard del Maestro SN. Esq. Elías Piña, Col. Narciso Mendoza. C.P. 88710, Reynosa, Tamaulipas, México
V. MORENO-MEDINA
Affiliation:
Centro de Biotecnología Genómica – Instituto Politécnico Nacional, Boulevard del Maestro SN. Esq. Elías Piña, Col. Narciso Mendoza. C.P. 88710, Reynosa, Tamaulipas, México
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

Studying and understanding the sources of variation in early life traits in farmed deer are fundamental for management and/or breeding purposes. Data from a captive white-tailed deer population were analysed to identify non-genetic and genetic factors affecting the birth weight (BW) of fawns. The year, type of birth and sex were included in a fixed linear model to examine their significance. All of the examined non-genetic factors had a highly significant effect on BW (P<0·001). The examined years showed variation attributed to food availability affecting the gestational conditions of does. Male fawns were 193 g heavier than female fawns at birth (P<0·001), and singleton births were associated with a higher BW (2·97±0·043 kg) compared with twin (−0·261 g) and triplet (−0·642 g) fawning (P<0·001). The best-fitting animal model was selected by comparing reduced and complete models. Based on the selected animal model, which included direct genetic and common maternal effects, genetic components and parameters were estimated. The direct heritability was found to be 0·28±0·126, and a small but important contribution of common maternal environmental effects was identified (c2=0·15±0·062). The results support the importance of certain environmental factors affecting BW and indicate the relevance of direct genetic and maternal environmental influences to sustained genetic changes in BW and positively correlated traits in farmed white-tailed deer populations.

Type
Animal Research Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adams, L. G. (2005). Effects of maternal characteristics and climatic variation on birth masses of Alaskan caribou. Journal of Mammalogy 86, 506513.Google Scholar
Andersen, R. & Linnell, J. D. C. (1997). Variation in maternal investment in a small cervid; the effects of cohort, sex, litter size and time of birth in roe deer (Capreolus capreolus) fawns. Oecologia 109, 7479.Google Scholar
Bijma, P. (2006). Estimating maternal genetic effects in livestock. Journal of Animal Science 84, 800806.Google Scholar
Blaylock, A. C. (2008). Effects of soil region, litter size, and gender on morphometric of white-tailed deer fawns. M.S. Thesis, Mississippi State University, Mississippi.Google Scholar
Boldman, K. G., Kriese, L. A., Van Vleck, L. D., Van Tassell, C. P. & Kachman, S. D. (1995). A manual for use of MTDFREML, A set of programs to obtain estimates of variances and covariances, Lincoln, Ne. United States Department of Agriculture, Agricultural Research Service. Clay Center. p. 120.Google Scholar
Borg, R. C., Notter, D. R. & Kott, R. W. (2009). Phenotypic and genetic associations between lamb growth traits and adult ewe body weights in western range sheep. Journal of Animal Science 87, 35063514.Google Scholar
Bradford, G. E. (1972). The role of maternal effects in animal breeding: VII. Maternal effects in sheep. Journal of Animal Science 35, 13241334.Google Scholar
Cundiff, L. V. (1972). The role of maternal effects in animal breeding: VIII. Comparative aspects of maternal effects. Journal of Animal Science 35, 13351337.Google Scholar
Davis, G. H. (2005). Major genes affecting ovulation rate in sheep. Genetic Selection Evolution 37, S11S23.Google Scholar
Delgadillo, C. A. C., López, O. R., Montaldo, H. H., Berruecos, V. J. M., Luna, A. A. & Vásquez, P. C. G. (2008). Direct and maternal genetic variance components for growth traits in red deer (Cervus elaphus scoticus). Veterinaria Mexico 39, 237245.Google Scholar
Diario Oficial De La Federación, 2000. Ley General de Vida Silvestre. 3 de julio de 2000. p. 33.Google Scholar
Fulbright, T. E. & Ortega-S, J. A. (2006). White-tailed Deer Habitat: Ecology and Management on Rangelands. p. 256. Texas: A & M University Press.Google Scholar
Gardner, D. S., Buttery, P. J., Daniel, Z. & Symonds, M. E. (2007). Factors affecting birth weight in sheep: maternal environment. Reproduction 133, 297307.Google Scholar
Golden, B. L., Garrick, D. J. & Benyshek, L. L. (2009) Milestones in beef cattle genetic evaluation. Journal of Animal Science 87, E3E10.Google Scholar
Gowane, G. R., Chopra, A., Prakash, V. & Arora, A. L. (2010). Estimates of (co)variance components and genetic parameters for body weights and first greasy fleece weight in Malpura sheep. Livestock Science 131, 94101.Google Scholar
Hanford, K. J., Van Vleck, L. D. & Snowder, G. D. (2005). Estimates of genetic parameters and genetic change for reproduction, weight, and wool characteristics of Rambouillet sheep. Small Ruminant Research 57, 175186.Google Scholar
Hanford, K. J., Van Vleck, L. D. & Snowder, G. D. (2006). Estimates of genetic parameters and genetic trend for reproduction, weight, and wool characteristics of Polypay sheep. Livestock Science 102, 7282.Google Scholar
Jacobson, H. A. (1995). Age and quality relationship. In Quality Whitetails, the Why and How of Quality Deer Management (Eds Miller, K. V. & Marchinton, R. L.), pp. 103111. USA: Stackpole Books.Google Scholar
Koots, K. R., Gibson, J. P. & Wilton, J. W. (1994). Analyses of published genetic parameter estimates for beef production traits. 1. Heritability. Animal Breeding Abstracts 62, 309338.Google Scholar
Kruuk, L. E. B. & Hadfield, J. D. (2007). How to separate genetic and environmental causes of similarity between relatives. Journal of Evolutionary Biology 20, 18901903.Google Scholar
Kruuk, L. E. B., Clutton-Brock, T. H., Rose, K. E. & Guinness, F. E. (1999). Early determinants of lifetime reproductive success differ between the sexes in red deer. Proceedings of Royal Society London Series B 266, 16551661.Google Scholar
Lindström, J. (1999). Early development and fitness in birds and mammals. Trends in Ecology and Evolution 14, 343348.CrossRefGoogle ScholarPubMed
Lumma, V. & Clutton-Brock, T. (2002). Early development, survival and reproduction in humans. Trends in Ecology and Evolution 17, 141147.CrossRefGoogle Scholar
Matika, O., Van Wyk, J. B., Erasmus, G. J. & Baker, R. L. (2003). Genetic parameter estimates in Sabi sheep. Livestock Production Science 79, 1728.Google Scholar
Mcmanus, C. M. & Hamilton, W. J. (1991). Estimation of genetic and phenotypic parameters for growth and reproductive traits for red deer on an upland farm. Animal Production 53, 227235.Google Scholar
Monteith, K. L., Schmitz, L. E., Jenks, J. A., Delger, J. A. & Bowyer, R. T. (2009). Growth of male white-tailed deer: consequences of maternal effects. Journal of Mammalogy 90, 651660.Google Scholar
Mrode, R. A. 1996. Linear Models for the Prediction of Animal Breeding Values, p. 187. Wallingford, UK: CAB International.Google Scholar
Nussey, D. H., Clutton-Brook, T. H., Albon, S. D., Pemberton, J. & Kruuk, L. E. B. (2005). Constraints on plastic responses to climate variation in red deer. Biology Letters 1, 457460.Google Scholar
Ramírez-Valverde, R., Sánchez-Cervantes, A., García-Muñiz, J. G., Núñez-Domínguez, R. & Lemus-Ramírez, V. (2011). Efectos ambientales y parámetros genéticos de variables de crecimiento para un rebaño de ciervo rojo (Cervus elaphus) en cautiverio. Revista Mexicana de Ciencias Pecuarias 2, 319330.Google Scholar
Räsänen, K. & Kruuk, L. E. B. (2007). Maternal effects and evolution at ecological time-scales. Functional Ecology 21, 408421.Google Scholar
Reinhold, K. (2002). Maternal effects and the evolution of behavioral and morphological characters: a literature review indicates the importance of extended maternal care. Journal of Heredity 93, 400405.CrossRefGoogle ScholarPubMed
SAS. 2001. SAS/STAT User's Guide (Release 8.20). Cary, NC: SAS Inst. Inc.Google Scholar
Sauer, P. R. (1984) Physiscal characteristics. In: White-tailed Deer Ecology and Management (Ed. Halls, L. K.), pp. 7390. Harrisburg, PA: Stackpole Books.Google Scholar
Sieber, V., Robert, N., Schybli, M., Sager, H., Miserez, R., Engels, & Ryser-Degiorgis, M. (2010). Causes of mortality and diseases in farmed deer in Switzerland. Veterinary Medicine International 2010, 18.CrossRefGoogle ScholarPubMed
Schmidt, K. T., Stien, A., Albon, S. D. & Guinnes, F. E. (2001). Antler length of yearling red deer is determined by population density, weather and early life-history. Oecologia 127, 191197.Google Scholar
Schultz, S. R. & Johnson, M. K. (1995). Effects of birth date and body mass at birth on adult body mass of male white-tailed deer. Journal of Mammalogy 76, 575579.CrossRefGoogle Scholar
Shokrollahi, B. & Baneh, H. (2012). (Co)variance components and genetic parameters for growth traits in Arabi sheep using different animal models. Genetics and Molecular Research 11, 305314.Google Scholar
Sorensen, D. 2004. An introductory overview of model comparison and related topics. On short Course: Model Choice, Model Assessment, and Related Topics, from a Likelihood to Bayesian Perspective, p. 48. Tjele, Denmark: Department of Genetics. Danish Institute of Agricultural Sciences.Google Scholar
Soundararajan, C. & Sivakumar, T. (2011). Factors affecting birth weight in Tellichery kids. Tamil Nadu Journal of Veterinary and Animal Science 7, 6063.Google Scholar
Van Vleck, L. D., Snowder, G. D., Hanford, K. J. (2003). Models with cytoplasmic effects for birth, weaning, and fleece weights, and litter size at birth for a population of Targhee sheep. Journal of Animal Science 81, 6167.Google Scholar
Williams, J. D., Krueger, W. F. & Harmel, D. H. (1994). Heritabilities for antler characteristics and body weight in yearling white-tailed deer. Heredity 73, 7883.Google Scholar