Hostname: page-component-669899f699-7xsfk Total loading time: 0 Render date: 2025-04-27T23:51:05.412Z Has data issue: false hasContentIssue false

Genetic analysis and hybrid performance of recommended cocoa (Theobroma cacao L.) clones for bean yield in Ghana

Published online by Cambridge University Press:  27 November 2024

Atta Ofori*
Affiliation:
Cocoa Research Institute of Ghana, Box 8, New Tafo, Akim, Ghana
Francis K. Padi
Affiliation:
Cocoa Research Institute of Ghana, Box 8, New Tafo, Akim, Ghana
Frank Owusu-Ansah
Affiliation:
Cocoa Research Institute of Ghana, Box 8, New Tafo, Akim, Ghana
*
Corresponding author: Atta Ofori; Email: [email protected]

Abstract

Attempts to develop high yielding varieties in Ghana have mostly relied on the introduction of new clones to broaden the range of planting materials for yield improvement. The objective of this study was to estimate the genetic variation and heritability for bean yield of six recommended cocoa clones using these as males in crosses with five seed garden parents. Twenty-four families obtained from a 5 × 6 North Carolina II (NC II) incomplete factorial mating design together with 19 high yielding single crosses, of which four were standard mixed hybrids, were planted in a randomized complete block design with four replications and evaluated for bean yield over 6 years. To account for the serial correlation among yield data collected from the same plants over years, six models with different covariance structures were tested. The general covariance model emerged appropriate based on Akaike information criterion values with significant (P < 0.01) family × year interaction. Average bean yield was highest in the NC II families followed by the specific crosses then the standard mixed hybrids. Combining ability analysis among the NC II was significant for female, male and female × male interaction along with a narrow-sense heritability of 0.26. Clone CRG 6035 among the males which had good general combining ability could be added to the seed garden parents, while the promising hybrids (NA 33 × SCA 9, SCA 6 × Pound 10, T60/887 × PA 121 and T79/501 × CRG 6035/103) undergo stability tests before release.

Type
Crops and Soils Research Paper
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abdul-Karimu, A, Adomako, B and Adu-Ampomah, Y (2006) Cocoa introduction into Ghana. Ghana Journal of Agricultural Science 39, 227238.Google Scholar
Adomako, B and Adu-Ampomah, Y (2003) Assessment of the yield of individual Cacao trees in four field trials. Cocoa Research Institute of Ghana (CRIG), 19–21 October 2003, Accra, Ghana.Google Scholar
Adu-Ampomah, Y, Abdul-Karimu, A and Frempong, EB (1999) The utilization of germplasm for genetic improvement of cacao in Ghana. Journal of Ghana Science 2, 99102.Google Scholar
Aikpokpodion, PO, Motamayor, JC, Adetimirin, VO, Adu-Ampomah, Y, Ingelbrecht, I, Eskes, AB and SchnellRS, K-AM (2009) Genetic diversity assessment of sub-samples of cacao, Theobroma cacao L. Collections in West Africa using simple sequence repeats marker. Tree Genetics and Genome 5, 699711.CrossRefGoogle Scholar
Akaike, H (1974) A new look at the statistical model identification. In IEEE Transaction on Automatic Control 19, 716723.CrossRefGoogle Scholar
Amores, FM, Vasco, SA, Eskes, AB, Suarez, C, Quiroz, JG, Loor, RG, Jimenez, JC, Zambrano, J, Bolanos, MJ, Reynel, VH, Teran, MM and Quijano, GC (2011) On-farm and on-station selection of new cocoa varieties in Ecuador, p. 59–72. In: Collaborative and participatory approaches to cocoa variety improvement. Final report of the CFC/ICCO/Bioversity International project on cocoa productivity and quality improvement: A participatory approach (2004–2010). Eskes, A.B. (ed.). Common Fund for Commodities (CFC), Amsterdam, The Netherlands; International Cacao Organization (ICCO), London, UK; Bioversity International, Rome, Italy.Google Scholar
Anon (1963) WACRI cocoa varieties: Explanatory notes. Mimeographed. (Cocoa Research Institute of Ghana, CRIG), New Tafo-Akim, Ghana.Google Scholar
Argout, X, Fouet, O, Wincker, P, Gramacho, K, Legavre, T, Sabau, X and Risterucci, AM (2008) Towards the understanding of the cocoa transcriptome: production and analysis of an exhaustive dataset of ESTs of Theobroma cacao L. generated from various tissues and under various conditions. BMC Genomics 9, 512.CrossRefGoogle ScholarPubMed
Asante-Poku, A and Angelucci, F (2013) Analysis of incentives and disincentives for cocoa in Ghana. Technical notes series. MAFAP, FAO, Rome.Google Scholar
Baah, F, Anchirinah, V and Amon-Armah, F (2011) Soil fertility management practices of cacao farmers in the eastern region of Ghana. Agriculture and Biology Journal of North America 2, 173181. https://doi.org/10.5251/abjna.2011.2.1.173.181CrossRefGoogle Scholar
Brunt, AA (1975) The effects of cacao swollen-shoot virus on the growth and yield of Amelonado and Amazon cacao (Theobroma cacao L.) in Ghana. Annal Applied Biology 80, 169180.CrossRefGoogle Scholar
Cervantes-Martinez, C, Brown, JS, Schnell, R, Phillips-Mora, W, Takrama, JF and Motamayor, JC (2006) Combining ability for disease resistance, yield, and horticultural traits of cacao (Theobroma cacao L.). Journal American Social Hort Sciences 131, 231241.CrossRefGoogle Scholar
CMS, Cocoa Management Systems (2023) The Cocoa Health and Extension Division data collection on the CMS program. Annual report, 2023 Accra Ghana.Google Scholar
Dias, LAS and Kagayama, PY (1995) Combining abilities for cocoa (Theobroma cacao L.) yield component under South Bahia conditions. Theoretical Applied Genetic 90, 534541.CrossRefGoogle Scholar
Edwin, J and Masters, W (2005) Genetic improvement and cocoa yield in Ghana. Experimental Agriculture 41, 491503.CrossRefGoogle Scholar
Eskes, AB (2011) Collaborative and participatory approaches to cocoa variety improvement. Final report of the CFC/ICCO/Bioversity project on Cocoa Productivity and quality improvement: a participatory approach (2004–2010). Common Fund for Commodities (CFC), Amsterdam, The Netherlands/ICCO, London, UK/Bioversity International, Rome, Italy.Google Scholar
Falconer, DS and Mackay, TFC (1996) Introduction to Quantitative Genetics, 4th Edn. Harlow, UK: Longman.Google Scholar
Glendinning, DR (1957) The performance of the introductions and hybrids in W.A.C.R.I. trials. In: Report Cocoa Conference 1957, London: Cocoa, Chocolate and Confectionery Alliance, pp. 4144.Google Scholar
Glendinning, DR (1964) A study of clonal cocoa varieties. Horticultural Research 4, 8997.Google Scholar
Hammer, O, Harper, DAT and Ryan, PD (2001) Paleontological statistics software package for education and data analysis. Palaeontol Electronica 4, 918.Google Scholar
Hoffmann, R (2016) Análise de Regressão: Uma Introdução à Econometria, 5th Edn. Piracicaba: Universidade de São Paulo.Google Scholar
Keselman, H, Algina, J, Kowalchunk, R and Wolfinger, R (1998) A comparison of two approaches for selecting covariance structures in the analysis of repeated measurements. Communications in Statistics – Simulation and Computation 27, 591604.CrossRefGoogle Scholar
Kozak, M and Piepho Hans, P (2018) What's normal anyway? Residual plots are more telling than significance tests when checking ANOVA assumption. Journal of Agronomy and Crop Science 204, 8698. https://api.semanticscholar.org/CorpusID:91056528CrossRefGoogle Scholar
Lambeth, C, Lee, BC, O'Malley, D and Wheeler, N (2001) Polymix breeding with parental analysis of progeny: an alternative to full-sib breeding and testing. Theoretical Applied Genetics 103, 930943.CrossRefGoogle Scholar
Legg, JT (1972) Measures to control the spread of cocoa swollen shoot disease in Ghana. PANS 18, 5790.Google Scholar
Lockwood, G and Gyamfi, MMO (1979) The CRIG cocoa germplasm collection with notes on codes used in the breeding programme at Tafo and elsewhere. Technical Bulletin, No. 10. Cocoa Research Institute of Ghana, Tafo.Google Scholar
Motamayor, JC, Lachenaud, P, Mota, SJW, Loor, R, Kuhn, DN, Brown, S and Schnell, RJ (2008) Geographic and genetic population differentiation of the Amazonian chocolate tree (Theobroma cacao L.). PLoS ONE 1, 3.Google Scholar
Ofori, A and Padi, FK (2020) Reciprocal differences and combining ability for growth and yield components in cacao (Theobroma cacao L.): a case of recommended cacao varieties in Ghana. Euphytica 216, 114.CrossRefGoogle Scholar
Ofori, A, Padi, FK, Assuah, MK and Anim-Kwapong, GJ (2014) Broadening the gene pool of cocoa (Theobroma cacao L.) progenies with Guiana clones: establishment and precocity traits. Journal of Crop Improvement 28, 715720.CrossRefGoogle Scholar
Ofori, A, Arthur, A and Padi, FK (2019) Extending the cacao (Theobroma cacao L.) gene pool with underrepresented genotypes: growth and yield traits. Tree Genetics & Genomes 15, 113.CrossRefGoogle Scholar
Ofori, A, Padi, FK and Amoako-Attah, I (2020) Field evaluation of cacao progenies derived from Guiana clones for yield and black pod disease resistance. Crop Science 60, 249261.CrossRefGoogle Scholar
Opoku, SY, Bhattacharjee, R, Kolesnikova-Allen, M, Motamayor, JC, Schnell, R, Ingelbrecht, I, Enu-Kwesi, L and Adu-Ampomah, Y (2007) Assessment of genetic diversity and population structure in West African cacao: a case study on collections from Ghana. Journal of Crop Improvement 20, 7387.CrossRefGoogle Scholar
Padi, FK and Ofori, A (2016) Cacao seed purity and genotype influence on seedling growth under peasant-farmer conditions in Ghana. Journal of Crop Improvement 30, 493515.CrossRefGoogle Scholar
Padi, FK, Ofori, A and Arthur, A (2016) Genetic variation and combining abilities for vigor and yield in a recurrent selection programme for cacao. Journal of Agricultural Science 155, 444464.CrossRefGoogle Scholar
Pereira, AS, Almeida, AAF, Branco, MCS, Costa, MGC and Ahnert, D (2017) Combining ability, heritability and genotypic relations of different physiological traits in cacao hybrids. PLoS ONE 12, 6.CrossRefGoogle ScholarPubMed
Petithuguenin, P (1995) Regeneration of cacao cropping systems: the Ivorian and Togolese experience. In Ruf, F and Siswoputranto, PS (eds), Cocoa Cycles: The Economics of Cocoa Supply. Sawston, UK: Woodhead Publication, pp. 8990.CrossRefGoogle Scholar
Pimentel-Gomes, F (2009) Curso de estatística Experimental. Piracicaba: FEALQ.Google Scholar
Pinheiro, J and Bates, D (2020) R Development Core Team. nlme: Linear and nonlinear mixed effects models. R package version 3, 1149.Google Scholar
Posnette, AF (1943) Cocoa selection on the gold coast. Tropical Agriculture 20, 149155.Google Scholar
Posnette, AF (1951) Virus research at the West African cacao research Institute, Tafo, Gold Coast. Tropical Agriculture 28, 133142.Google Scholar
Posnette, AF and Todd, JMA (1951) Virus diseases of cocoa in West Africa. VIII. The search for virus-resistant cacao. Annal Applied Biology 38, 785800.CrossRefGoogle Scholar
Robinson, HF, Comstock, RE and Harve, PH (1949) Estimates of heritability and the degree of dominance in corn. Journal Agronomy 41, 353359.CrossRefGoogle Scholar
Stroup, WW, Milliken, GA, Claassen, EA and Wolfinger, RD (2018) SAS R for Mixed Models: Introduction and Basic Applications. Cary, NC, USA: SAS Institute Inc.Google Scholar
Wollgast, J and Anklam, E (2010) Polyphenols in chocolate: is there a contribution to human health? Food Research International 33, 449459.CrossRefGoogle Scholar
Supplementary material: File

Ofori et al. supplementary material

Ofori et al. supplementary material
Download Ofori et al. supplementary material(File)
File 23.7 KB