Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-08T23:25:48.791Z Has data issue: false hasContentIssue false

The functional development of the calf II. Development of rumen function in the calf

Published online by Cambridge University Press:  27 March 2009

N. W. Godfrey
Affiliation:
State Department of Agriculture, Victoria, Australia

Extract

1. Two experiments were conducted to study the development of rumen function in young dairy calves under different feeding regimes.

2. The volume of the rumen contents increased with age whereas the volume of the abomasum contents tended to remain constant.

3. The concentration of total volatile fatty acids in the rumen liquor of milk-fed calves with free access to pasture reached constant levels at 5 weeks of age. Restricting calves to an all milk diet delayed the development of adult levels of volatile fatty acids until such time as roughage became available.

4. Levels of rumen ammonia were high soon after birth but showed a decline with age. An absence of roughage in the diet tended to maintain higher levels of rumen ammonia.

5. The pH of rumen liquor showed a steady increase from birth to 17 weeks of age.

6. Both volatile fatty acid and ammonia levels in the rumen showed a characteristic diurnal pattern of variation.

7. High figures for the digestibility of pasture by young calves were obtained. When calves which had been restricted to an all milk diet were offered roughage they quickly attained a digestive efficiency comparable with calves which had access to pasture from birth.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1961

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Armstrong, D. G., Preston, T. R. & Armstrong, R. H. (1954). Nature, Lond., 174, 1182.CrossRefGoogle Scholar
Chambers, D. T. (1959). J. Agric. Sci. 53, 417.CrossRefGoogle Scholar
Conrad, H. R. & Hibbs, J. W. (1953). J. Dairy Sci. 36, 1326.CrossRefGoogle Scholar
Conrad, H. R. & Hibbs, J. W. (1956). J. Dairy Sci. 39, 1170.CrossRefGoogle Scholar
Conrad, H. R., Hibbs, J. W. & Pounden, W. D. (1954). J. Dairy Sci. 37, 664.CrossRefGoogle Scholar
Conrad, H. R., Hibbs, J. W., Pounden, W. D. & Sutton, T. S. (1950). J. Dairy Sci. 33, 585.CrossRefGoogle Scholar
Conway, E. J. (1947). Microdiffusion Analysis and Volumetric Error. Crosby Lockwood.Google Scholar
Corbett, J. L. (1953). Brit. J. Anim. Behav. 1, 67.CrossRefGoogle Scholar
Godfrey, N. W. (1961). J. Agric. Sci. (in the Press).Google Scholar
Hancock, J. (1953). Anim. Breed. Abstr. 21, 1.Google Scholar
Hibbs, J. W., Conrad, H. R. & Pounden, W. D. (1954). J. Dairy Sci. 37, 724.CrossRefGoogle Scholar
Hibbs, J. W., Conrad, H. R., Pounden, W. D. & Frank, N. (1956). J. Dairy Sci. 39, 171.CrossRefGoogle Scholar
Kesler, E. M., Ronning, M. & Knodt, C. B. (1951). J. Anim. Sci. 10, 969.CrossRefGoogle Scholar
Lengemann, F. W. & Allen, N. N. (1955). J. Dairy Sci. 38, 651.CrossRefGoogle Scholar
Lengemann, F. W. & Allen, N. N. (1959). J. Dairy Sci. 42, 1171.CrossRefGoogle Scholar
Markham, R. (1942). Biochem. J. 36, 790.CrossRefGoogle Scholar
McArthur, A. T. G. (1951). Proc. N.Z. Soc. Anim. Prod. 11, 87.Google Scholar
McArthur, A. T. G. (1957). N.Z. J. Sci. Tech. 38, 696.Google Scholar
McCarthy, R. D. & Kesler, E. M. (1956). J. Dairy Sci. 39, 1280.CrossRefGoogle Scholar
Preston, T. R., Archibald, J. D. H. & Tinkler, W. (1957). J. Agric. Sci. 48, 259.CrossRefGoogle Scholar
Roy, J. H. B., Shillam, K. W. G. & Palmer, J. (1955). J. Dairy Res. 22, 252.CrossRefGoogle Scholar
Smith, R. H. (1959). J. Agric. Sci. 52, 72.CrossRefGoogle Scholar
Temate, H. (1957). Tohoku J. Agric. Res. 8, 65.Google Scholar
Turner, A. W. & Hodgetts, V. E. (1955). Aust. J. Agric. Res. 6, 115.CrossRefGoogle Scholar
Wardrop, I. D. & Coombe, J. B. (1961). Aust. J. Agric. Res. (in the Press).Google Scholar