Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-07-02T19:36:56.046Z Has data issue: false hasContentIssue false

Fermentative characteristics and chemical composition of cochineal nopal cactus silage containing chemical and microbial additives

Published online by Cambridge University Press:  28 October 2020

W. C. C. S. Sá
Affiliation:
Department of Animal Science, Federal University of Paraíba, Areia, PB, Brazil
E. M. Santos
Affiliation:
Department of Animal Science, Federal University of Paraíba, Areia, PB, Brazil
J. S. de Oliveira
Affiliation:
Department of Animal Science, Federal University of Paraíba, Areia, PB, Brazil
G. G. L. de Araujo
Affiliation:
Embrapa Semiarid, Petrolina, PE, Brazil
A. F. Perazzo
Affiliation:
Department of Animal Science, Federal University of Maranhão, Chapadinha, MA, Brazil
A. L. da Silva
Affiliation:
Department of Animal Science, Federal University of Paraíba, Areia, PB, Brazil
D. M. Pereira*
Affiliation:
Department of Animal Science, Federal University of Paraíba, Areia, PB, Brazil
J. M. César Neto
Affiliation:
Department of Animal Science, Federal University of Paraíba, Areia, PB, Brazil
F. N. S. Santos
Affiliation:
Department of Animal Science, Federal University of Paraíba, Areia, PB, Brazil
G. M. Leite
Affiliation:
Department of Animal Science, Federal University of Paraíba, Areia, PB, Brazil
*
Author for correspondence: D. M. Pereira, E-mail: [email protected]

Abstract

The objective of this study was to evaluate the fermentative characteristics and chemical composition of cochineal nopal cactus silage additives with urea or Lactobacillus buchneri (LB), as well as the association of both additives in four storage times (7, 15, 60 and 120 days) and during aerobic stability, with evaluations at 0, 48 and 96 h. Four silages were used: no additive, addition of 2% urea, addition of LB and addition of 2% urea and LB. The study was divided into two experiments: the first experiment evaluated the silages at different storage times, and the second experiment evaluated the silages during the aerobic stability test. In both experiments, the experimental design was completely randomized in a factorial scheme (4 × 4 and 4 × 3) with three replicates per treatment. After the ensiling process, lactic acid bacteria predominated in all treatments. The concentration of lactic acid increased significantly from 60 days of ensiling. The concentration of acetic acid varied significantly between the storage times only for the silages treated with urea and LB alone. The silage treated with urea maintained a constant pH value up to 120 days of storage. During the 96 h aerobic stability test, no breaking in the stability of silages was observed. The exclusive or associated use of urea and LB promotes improvement in the fermentative characteristics of cochineal nopal cactus silage, without major alterations in the chemical composition or interfering with the aerobic stability of the silages.

Type
Crops and Soils Research Paper
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alli, I, Fairbairn, R, Baker, BE and Garcia, G (1983) The effects of ammonia on the fermentation of chopped sugarcane. Animal Feed Science and Technology 9, 291299.CrossRefGoogle Scholar
AOAC (1990) Official Methods of Analysis, 17th Edn. Arlington, VA, USA: Association of Official Analytical Chemists International.Google Scholar
Ávila, CLS, Pinto, JC, Sugawara, MS, Silva, MS and Schwan, RF (2008) Qualidade da silagem de cana-de-açúcar inoculada com uma cepa de Lactobacillus buchneri. Acta Scientiarum Animal Sciences 30, 255261.CrossRefGoogle Scholar
Ávila, CLS, Carvalho, BF, Pinto, JC, Duarte, WF and Schwan, RF (2014) The use of Lactobacillus species as starter cultures for enhancing the quality of sugar cane silage. Journal of Dairy Science 97, 940951.CrossRefGoogle ScholarPubMed
Bolsen, KK, Lin, C, Brent, CR, Feyerherm, AM, Urban, JE and Aimutis, WR (1992) Effects of silage additives on the microbial succession and fermentation process of alfafa and corn silages. Journal of Dairy Science 75, 30663083.CrossRefGoogle Scholar
Brito, GSMS, Santos, EM, Araújo, GGL, Oliveira, JS, Zanine, AM, Perazzo, AF and Cavalcanti, HS (2020) Mixed silages of cactus pear and gliricidia: chemical composition, fermentation characteristics, microbial population and aerobic stability. Scientific Reports 10, 113.Google Scholar
Carr, FJ, Chill, D and Maida, N (2002) The lactic acid bacteria: a literature survey. Critical Reviews in Microbiology 28, 281370.CrossRefGoogle ScholarPubMed
Carvalho, CBM (2017) Estratégias de conservação da palma forrageira. Dissertação de mestrado, Universidade Federal do Piauí, Brasil.Google Scholar
Corsato, CE, Scarpare Filho, and Sales, ECJ (2008) Teores de carboidratos em órgãos lenhosos do caquizeiro em clima tropical. Revista Brasileira de Fruticultura 30, 414418.CrossRefGoogle Scholar
Dubois, M, Gilles, KA, Hamilton, JK, Rebers, PA and Smitch, F (1956) Colourimetric method for determination of sugars and related substances. Analytical Biochemistry 28, 350356.Google Scholar
Evangelista, AR, Siqueira, GR, Lima, JA, Lopes, J and Rezende, AV (2009) Alterações bromatológicas e fermentativas durante o armazenamento de silagens de cana-de-açúcar com e sem milho desintegrado com palha e sabugo. Revista Brasileira de Zootecnia 38, 2026.CrossRefGoogle Scholar
Ferreira, DF (2008) SISVAR: um programa para análises e ensino de estatística. Revista Symposium 6, 3641.Google Scholar
Kung, L Jr, Robinson, JR, Ranjit, NK, Chen, JH, Golt, CM and Pesek, JD (2000) Microbial populations, fermentation end-products, and aerobic stability of corn silage treated with ammonia or a propionic acid-based preservative. Journal of Dairy Science 83, 14791486.10.3168/jds.S0022-0302(00)75020-XCrossRefGoogle ScholarPubMed
Kung, L Jr, Shaver, RD, Grant, RJ and Schmidt, RJ (2018) Silage review: interpretation of chemical, microbial and organoleptic components of silages. Journal of Dairy Science 101, 40204033.CrossRefGoogle ScholarPubMed
Lopes, J and Evangelista, AR (2010) Características bromatológicas, fermentativas e população de leveduras de silagens de cana-de-açúcar acrescidas de ureia e aditivos absorventes de umidade. Revista Brasileira de Zootecnia 39, 984991.10.1590/S1516-35982010000500007CrossRefGoogle Scholar
Macêdo, AJDS, Santos, EM, Araújo, GGLD, Edvan, RL, Oliveira, JSD, Perazzo, AF and Pereira, DM (2018) Silages in the form of diet based on spineless cactus and buffelgrass. African Journal of Range & Forage Science 35, 121129.CrossRefGoogle Scholar
McDonald, P, Henderson, AR and Heron, SJE (1991) The Biochemistry of Silage, 2nd Edn. Mallow, Bucks (UK): Chalcombe Publications.Google Scholar
McDonald, P, Edwards, RA, Greenhalgh, JFD, Morgan, CA, Sinclair, LA and Wilkinson, RG (2010) Animal Nutrition, 7nd Edn. Pearson.Google Scholar
Miranda, DCL (2006) Perda de matéria seca em silagem de cana-de-açúcar tratada com aditivos químicos e microbiológicos. Dissertação de mestrado, Universidade Federal de Lavras, Brasil.Google Scholar
Neumann, M, Oliboni, R, Oliveira, MR, Faria, MV, Ueno, RK, Reinerb, LL and Durman, T (2010) Chemicals additive used in silages. Pesquisa aplicada & Agrotecnologia 3, 197207.Google Scholar
Nogueira, MS, Santos, EM and Araújo, GGL (2016) Ensilagem de palma forrageira. In Santos, EM, Parente, HN, Oliveira, JS and Parente, MOM (eds), Ensilagem de plantas forrageiras para o Semiárido. Editora EDUFMA, p. 249.Google Scholar
Nogueira, MS, Araujo, GGL, Santos, EM, Gonzaga Neto, S, Oliveira, JS, Perazzo, AF, Zanine, AM, Pinho, RMA, Correa, YR and Pereira, DM (2019) Feed Alternatives with Cactus Forage Silage for Animal Nutrition. International Journal Of Agriculture And Biology 22, 13931398.Google Scholar
Oliveira Junior, S, Barreiro Neto, M, Ramos, JPF, Leite, MLMV, Brito, EA and Nascimento, JP (2009) Crescimento vegetativo da palma forrageira (Opuntia fícus-indica) em função do espaçamento no Semiárido paraibano. Tecnologia & Ciência Agropecuária 3, 712.Google Scholar
Pahlow, G, Much, RE, Driehuis, F, Elferink, SJWHO and Spoelstra, SF (2003) Microbiology of ensiling. In Madison, (ed), Silage Science and Technology. Proceedings, Agronomy 42. Madison: ASCSSA-SSSA, pp. 3193.Google Scholar
Pedroso, AF, Nussio, LG, Barioni Júnior, W, Rodrigues, AA, Loures, DRS, Campos, F, Ribeiro, JL, Mari, LJ, Zopollatto, M, Schmidt, P, Paziani, SF and Horii, J (2006) Performance of Holstein heifers fed sugarcane silages treated with urea, sodium benzoate or Lactobacillus buchneri. Pesquisa Agropecuária Brasileira 41, 649654.CrossRefGoogle Scholar
Pedroso, AF, Nussio, LG, Loures, DRS, Paziani, SF, Igarasi, MS, Coelho, RM, Horii, J and Rodrigues, AA (2007) Efeito do tratamento com aditivos químicos e inoculantes bacterianos nas perdas e na qualidade de silagens de cana-de-açúcar. Revista Brasileira de Zootecnia 36, 558564.CrossRefGoogle Scholar
Pedroso, AF, Nussio, LG, Loures, DRS, Paziani, SF, Ribeiro, JL, Mari, LJ, Zopollatto, M, Schmidt, P, Mattos, WRS and Horii, J (2008) Fermentation, losses, and aerobic stability of sugarcane silages treated with chemical or bacterial additives. Scientia Agricola 65, 589594.CrossRefGoogle Scholar
Pedroso, AF, Rodrigues, AA and Barioni Júnior, W (2011) Fermentation parameters, quality and losses in sugarcane silages treated with chemical additives and a bacterial inoculant. Revista Brasileira de Zootecnia 40, 23182322.CrossRefGoogle Scholar
Pereira, CA, Silva, RR, Gonçalves, LC, Borges, ALCC, Borges, I, Gomes, SP, Rodrigues, JAS, Saliba, EOS, Ferreira, JJC and Silva, JJ (2007) Avaliação da silagem do híbrido de sorgo (Sorghum bicolour (L.) Moench) BR 601 com aditivos 1 - pH, nitrogênio amoniacal, matéria seca, proteína bruta e carboidratos solúveis. Revista Brasileira de Milho e Sorgo 6, 211222.10.18512/1980-6477/rbms.v6n2p211-222CrossRefGoogle Scholar
Pinho, RMA, Santos, EM and Silva, TC (2016) Microbiologia e o processo de ensilagem. In Santos, EM, Parente, HN, Oliveira, JS, Parente, MOM (eds), Ensilagem de plantas forrageiras para o Semiárido. São Luís: Ed. EDUFMA, p. 317.Google Scholar
Playne, MJ and Mcdonald, P (1966) The buffering constituents of herbage and silage. Journal Science of Food and Agriculture 17, 264268.CrossRefGoogle Scholar
Reich, LJ and Kung, L Jr (2010) Effects of combining Lactobacillus buchneri 40788 with various lactic acid bacteria on the fermentation and aerobic stability of corn silage. Animal Feed Science and Technology 159, 105109.CrossRefGoogle Scholar
Rosa, B and Fadel, R (2001) Uso de amônia anidra e de ureia para melhorar o valor alimentício de forragens conservadas. In: Jobim, CC, Cecato, U, Damasceno, JC and Santos, GT (eds), Anais do Simpósio sobre Produção e Utilização de Forragens Conservadas. Maringá: Universidade Estadual de Maringá/UEM/CCA/DZO, pp. 4163.Google Scholar
Santos, EM, Silva, TC, Macedo, CHO and Campos, FS (2013) Lactic acid bacteria in tropical grass silages. Lactic acid bacteria. R & D for Food. Health and Livestock Purposes. London: InTech 17, 335362.Google Scholar
Santos, EM, Pereira, OG, Garcia, R, Ferreira, CL, Oliveira, JS and Silva, TC (2014) Effect of regrowth interval and a microbial inoculant on the fermentation profile and dry matter recovery of guinea grass silages. Journal of Dairy Science 97, 44234432.10.3168/jds.2013-7634CrossRefGoogle Scholar
Santos, APM, Santos, EM, Oliveira, JSD, Ribeiro, OL, Perazzo, AF, Martins, APR, Macêdo, AJS and Pereira, GA (2018) Effects of urea addition on the fermentation of sorghum (Sorghum bicolour) silage. African Journal of Range & Forage Science 35, 5562.CrossRefGoogle Scholar
Siegfried, R, Ruckemann, H and Stumpf, G (1984) Method for the determination of organic acids in silage by high performance liquid chromatography. Landwirtsch. Forsch 37, 298304.Google Scholar
Siqueira, GR, Reis, RA, Schocken-Iturrino, RP, Pires, AJV, Bernardes, TF and Amaral, RC (2007) Perdas de silagens de cana-de-açúcar tratadas com aditivos químicos e bacterianos. Revista Brasileira de Zootecnia 36, 20002009.10.1590/S1516-35982007000900008CrossRefGoogle Scholar
Van Soest, PJ, Robertson, JB and Lewis, BA (1991) Methods for dietary fibre, neutral detergent fibre, and no starch polysaccharides in relation to animal nutrition. In: Symposium: Carbohydrate methodology, metabolism, and nutritional implications in dairy cattle. Journal of Dairy Science 74, 35833597.CrossRefGoogle Scholar
Zanine, AM, Santos, EM, Dórea, JRR, Dantas, PAS, Silva, TC and Pereira, OG (2010) Evaluation of elephant grass with addition of cassava scrapings. Revista Brasileira de Zootecnia 39, 26112616.CrossRefGoogle Scholar