Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-22T04:10:39.693Z Has data issue: false hasContentIssue false

Evaluation of early maturing cowpea (Vigna unguiculata) germplasm for variation in phosphorus use efficiency and biological nitrogen fixation potential with indigenous rhizobial populations

Published online by Cambridge University Press:  07 April 2016

R. ABAIDOO
Affiliation:
Kwame Nkrumah University of Technology, Kumasi, Ghana International Institute of Tropical Agriculture, PMB 5320, Oyo Road, Ibadan, Nigeria
M. O. DARE*
Affiliation:
Federal University of Agriculture, Abeokuta, Nigeria
S. KILLANI
Affiliation:
International Institute of Tropical Agriculture, PMB 5320, Oyo Road, Ibadan, Nigeria
A. OPOKU
Affiliation:
Kwame Nkrumah University of Technology, Kumasi, Ghana
*
* To whom all correspondence should be addressed. Email: [email protected]; [email protected]

Summary

Cowpea genotypes that efficiently utilize phosphorus (P) with high potential for biological nitrogen (N) fixation (BNF) are vital to sustainable cropping systems in West Africa. A total of 175 early maturing cowpea genotypes were evaluated in 2010 and 2011 for P use efficiency (PUE) and BNF with an indigenous rhizobial population at Shika in the Northern Guinea savanna of Nigeria. There were significant genotypic variations for all 11 variables measured. The P utilization index, percentage N derived from the atmosphere and total N fixed ranged between 2·10–4·67, 31·3–61·86% and 11·86–50 kg/ha, respectively. The 175 early maturing cowpea genotypes were divided into five categories using principal component analysis (PCA), whereby total N fixed was associated with N and P uptake and plant biomass yield. Complete linkage cluster analysis revealed a total of three distinctive clusters having remarkable correspondence with the PCA. Some genotypes were identified as potential candidates for further breeding programmes using high PUE genotypes with relatively high capacity for BNF and indigenous rhizobial populations.

Type
Crops and Soils Research Papers
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abayomi, Y. A., Ajibade, T. V., Sammuel, O. F. & Sa'adudeen, B. F. (2008). Growth and yield responses of cowpea (Vigna unguiculata (L.) Walp) genotypes to nitrogen fertilizer (NPK) application in the southern Guinea savannah zone of Nigeria. Asian Journal of Plant Science 7, 170176.CrossRefGoogle Scholar
Abbasi, M. K., Manzoor, M. & Tahir, M. M. (2010). Efficiency of rhizobium inoculation and P fertilization in enhancing nodulation, seed yield, and phosphorus use efficiency by field grown soybean under hilly region of Rawalakot Azad Jammu and Kashmir, Pakistan. Journal of Plant Nutrition 33, 10801102.Google Scholar
Adu-Gyamfi, J. J., Fujita, K. & Ogata, S. (1989). Phosphorus absorption and utilization efficiency of pigeon pea (Cajanus cajan (L.) Millsp.) in relation to dry matter production and dinitrogen fixation. Plant and Soil 119, 315324.Google Scholar
Ajeigbe, H. A., Singh, B. B., Musa, A., Adeosun, J. O., Adamu, R. S. & Chikoye, D. (2010). Improved Cowpea–cereal Cropping Systems: Cereal–double Cowpea System for the Northern Guinea Savanna Zone. Ibadan, Nigeria: IITA.Google Scholar
Al-Niemi, T. S., Kahn, M. L. & McDermott, T. R. (1997). P metabolism in the bean – Rhizobium tropici symbiosis. Plant Physiology 113, 12331242.Google Scholar
Ankomah, A. B., Zapata, F., Hardarson, G. & Danso, S. K. A. (1996). Yield, nodulation, and N2 fixation by cowpea cultivars at different phosphorus levels. Biology and Fertility of Soils 22, 1015.Google Scholar
Ao, X., Guo, X. H., Zhu, Q., Zhang, H. J., Wang, H. Y., Ma, Z. H., Han, X. R., Zhao, M. H. & Xie, F. T. (2014). Effect of phosphorus fertilization to P uptake and dry matter accumulation in soybean with different P efficiencies. Journal of Integrative Agriculture 13, 326334.CrossRefGoogle Scholar
Badu-Apraku, B., Menkir, A., Fakorede, M. A. B., Fontem-Lum, A. & Obeng-Antwi, K. (2006). Multivariate analyses of the genetic diversity of forty-seven Striga resistant tropical early maturing maize inbred lines. Maydica 51, 591599.Google Scholar
Bates, T. R. & Lynch, J. P. (2001). Root hairs confer a competitive advantage under low phosphorus availability. Plant and Soil 236, 243250.Google Scholar
Bationo, A., Waswa, B., Okeyo, J. M., Maina, F., Kihara, J. & Mokwunye, U. (2011). Fighting Poverty in Sub-Saharan Africa: the Multiple Roles of Legumes in Integrated Soil Fertility Management. Dordrecht, The Netherlands: Springer.Google Scholar
Bationo, A., Ntare, B. R., Tarawali, S. A. & Tabo, R. (2002). Soil fertility management and cowpea production in the semiarid tropics. In Challenges and Opportunities for Enhancing Sustainable Cowpea Production (Eds Fatokun, C. A., Tarawali, S. A., Singh, B. B., Kormawa, P. M. & Tamò, M.), pp. 301318. Ibadan, Nigeria: IITA.Google Scholar
Bationo, A., Mughogho, S. K. & Mokwunye, A. (1986). Agronomic evaluation of phosphate fertilizers in tropical Africa. In Management of Nitrogen and Phosphorus Fertilizers in Sub-Saharan Africa (Eds Mokwunye, A. & Vlek, P. L. G.), pp. 283318. Developments in Plant and Soil Sciences, Vol. 24. Dordrecht, The Netherlands: Martinus Nijhoff Publishers.Google Scholar
Bremner, J. M. & Mulvaney, C. S. (1982). Nitrogen - total. In Methods of Soil Analysis Part 2: Chemical and Microbiological Properties, 2nd edn (Eds Page, A. L., Miller, R. H. & Keeny, D. R.), pp. 595624. Madison, WI: American Society of Agronomy and Soil Science Society of America.Google Scholar
Broughton, W. J. & Dilworth, M. J. (1970). Plant nutrient solutions. In Handbook for Rhizobia: Methods in Legume–Rhizobium Technology (Eds Somasegaran, P. & Hoben, H. J.), pp. 245249. Hawaii, USA: Niftal Project, University of Hawaii.Google Scholar
Cakmak, I. (2002). Plant nutrition research: priorities to meet human needs for food in sustainable ways. Plant and Soil 247, 324.Google Scholar
Carsky, R. J., Oyewole, B. & Tian, G. (1999). Integrated soil management for the savanna zone of West Africa: legume rotation and fertilizer N. Nutrient Cycling in Agroecosystems 55, 95105.Google Scholar
Carsky, R. J., Vanlauwe, B. & Lyasse, O. (2002). Cowpea rotation as a resource management technology for cereal-based systems in the savannas of West Africa. In Challenges and Opportunities for Enhancing Sustainable Cowpea Production (Eds Fatokun, C. A., Tarawali, S. A., Singh, B. B., Kormawa, P. M. & Tamò, M.), pp. 252266. Ibadan, Nigeria: IITA.Google Scholar
Cassman, K. G., Munns, D. N. & Beck, D. P. (1981). Phosphorus nutrition of Rhizobium japonicum: strain differences in phosphate storage and utilization. Soil Science Society of America Journal 45, 517520.Google Scholar
Dakora, F. D., Aboyinga, R. A., Mahama, Y. & Apaseku, J. (1987). Assessment of N2 fixation in groundnut (Arachis hypogaea L.) and cowpea (Vigna unguiculata L. Walp.) and their relative N contribution to a succeeding maize crop in Northern Ghana. MIRCEN Journal of Applied Microbiology and Biotechnology 3, 389399.Google Scholar
De Freitas, A. D. S., Silva, A. F. & Sampaio, E. V. B. (2012). Yield and biological nitrogen fixation of cowpea varieties in the semi-arid region of Brazil. Biomass and Bioenergy 45, 109114.Google Scholar
Ding, Y. C., Chen, M. C., Cheng, B., Li, L. J. & Zhang, H. S. (2006). The selection of spring soybean genotypes with high phosphorus efficiency in Northern China. Plant Nutrition and Fertilizer Science 12, 597600.Google Scholar
Ehlers, J. D. & Hall, A. E. (1997). Cowpea (Vigna unguiculata L. Walp). Field Crops Research 53, 187204.CrossRefGoogle Scholar
FAO/ISRIC/ISSS (1998). World Reference Base for Soil Resources. World Soil Resources Report no. 84. Rome: FAO.Google Scholar
GENSTAT (2011). GenStat Release 10·3DE (PC/Windows Vista). Rothamsted Experimental Station, Hertfordshire, UK: VSN International Ltd.Google Scholar
Hamdy, M. (1989). Cowpea Processing Project 685–0281. Dakar, Senegal: USAID.Google Scholar
Hammond, J. P., Broadley, M. R., White, P. J., King, G. J., Bowen, H. C., Hayden, R., Meacham, M. C., Mead, A., Overs, T., Spracklen, W. P. & Greenwood, D. J. (2009). Shoot yield drives phosphorus use efficiency in Brassica oleracea and correlates with root architecture traits. Journal of Experimental Botany 60, 19531968.Google Scholar
Herridge, D. F. (1982). Relative abundance of ureides and nitrate in plant tissues of soybean as a quantitative assay of nitrogen fixation. Plant Physiology 70, 16.Google Scholar
Herridge, D. F. & Peoples, M. B. (1990). Ureide assay for measuring nitrogen fixation by nodulated soybean calibrated by 15N methods. Plant Physiology 93, 495503.Google Scholar
Herridge, D. F., Peoples, M. B. & Boddey, R. M. (2008). Global inputs of biological nitrogen fixation in agricultural systems. Plant and Soil 311, 118.Google Scholar
Hinsinger, P. (2001). Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant and Soil 237, 173195.Google Scholar
Horst, W. J. & Hardter, R. (1994). Rotation of maize with cowpea improves yield and nutrient use of maize compared to maize monocropping in an Alfisol in the northern Guinea savanna of Ghana. Plant and Soil 160, 171183.Google Scholar
Jemo, M., Abaidoo, R. C., Nolte, C. & Horst, W. J. (2006). Genotypic variation for phosphorus uptake and dinitrogen fixation in cowpea on low-phosphorus soils of southern Cameroon. Journal of Plant Nutrition & Soil Science 169, 816825.Google Scholar
Kiers, E. T., Hutton, M. G. & Denison, R. F. (2007). Human selection and the relaxation of legume defences against ineffective rhizobia. Proceedings of the Royal Society B 274, 31193126.Google Scholar
Kimiti, J. M. & Odee, D. W. (2010). Integrated soil fertility management enhances population and effectiveness of indigenous cowpea rhizobia in semi-arid eastern Kenya. Applied Soil Ecology 45, 304309.Google Scholar
Li, Y. D., Wang, Y. J., Tong, Y. P., Gao, J. G., Zhang, J. S. & Chen, S. Y. (2005). QTL mapping of phosphorus deficiency tolerance in soybean (Glycine max L.Merr.). Euphytica 142, 137142.Google Scholar
Manske, G. G. B., Ortiz-Monasterio, J. I., Van Ginkel, M., Gonzalez, R. M., Fischer, R. A., Rajaram, S. & Vlek, P. L. G. (2001). Importance of P uptake efficiency versus P utilization for wheat yield in acid and calcareous soils in Mexico. European Journal of Agronomy 14, 261274.Google Scholar
Manu, A., Bationo, A. & Geiger, S. C. (1991). Fertility status of selected millet producing soils of West Africa with emphasis on phosphorus. Soil Science 152, 315320.CrossRefGoogle Scholar
Mohammed, I. B., Olufajo, O. O., Singh, B. B., Miko, S. & Mohammed, S. G. (2008). Growth and development of components of sorghum/cowpea intercrop in Northern Nigeria. ARPN Journal of Agricultural and Biological Science 3, 713.Google Scholar
Nwoke, O. C., Okogun, J. A., Sanginga, N., Diels, J., Abaidoo, R. C. & Osonubi, O. (2009). Phosphate rock utilization by soybean genotypes on a low-P savanna soil and the status of soil P fractions after a subsequent maize crop. African Journal of Biotechnology 8, 34793488.Google Scholar
Odion, E. C., Asiribo, O. E., Ogunlela, V. B., Singh, B. B. & Tarawali, S. A. (2007). Strategies to improve and sustain food production capacity in the savanna: the role of leguminous fodder crops in maintaining soil fertility and health. Journal of Food, Agriculture and Environment 5, 338344.Google Scholar
Okalebo, J. R., Gathua, K. W. & Woomer, P. L. (1993). Laboratory Methods of Soil and Plant Analysis: a Working Manual. Nairobi, Kenya: TSBF Programme, UNESCOROSTA.Google Scholar
Osborne, L. D. & Rengel, Z. (2002). Screening cereals for genotypic variation in efficiency of phosphorus uptake and utilisation. Australian Journal of Agricultural Research 53, 295303.Google Scholar
Ozturk, L., Eker, S., Torun, B. & Cakmak, I. (2005). Variation in phosphorus efficiency among 73 bread and durum wheat genotypes grown in a phosphorus-deficient calcareous soil. Plant and Soil 269, 6980.CrossRefGoogle Scholar
Pan, X. W., Li, W. B., Zhang, Q. Y., Li, Y. H. & Liu, M. S. (2008). Assessment on phosphorus efficiency characteristics of soybean genotypes in phosphorus-deficient soils. Agricultural Sciences in China 7, 958969.Google Scholar
Qiao, Y., Tang, C., Han, X. & Miao, S. (2007). Phosphorus deficiency delays the onset of nodule function in soybean. Journal of Plant Nutrition 30, 13411353.Google Scholar
Raghothama, K. G. & Karthikeyan, A. S. (2005). Phosphate acquisition. Plant and Soil 274, 3749.Google Scholar
Reddy, K. C., Visser, P. L., Klaij, M. C. & Renard, C. (1994). The effects of sole and traditional intercropping of millet and cowpea on soil and crop productivity. Experimental Agriculture 30, 8388.Google Scholar
Rose, T. J. & Wissuwa, M. (2012). Rethinking internal phosphorus utilization efficiency: a new approach is needed to improve PUE in grain crops. Advances in Agronomy 116, 185217.Google Scholar
Rose, T. J., Pariasca-Tanaka, J., Rose, M. T., Fukuta, Y. & Wissuwa, M. (2010). Genotypic variation in grain phosphorus concentration; and opportunities to improve P-use efficiency in rice. Field Crop Research 119, 154160.Google Scholar
Sanginga, N., Lyasse, O. & Singh, B. B. (2000). Phosphorus use efficiency and nitrogen balance of cowpea breeding lines in a low P soil of the derived savanna zone in West Africa. Plant and Soil 220, 119128.Google Scholar
SAS (2003). SAS/STAT Guide for Personal Computer Version 9.1. Cary, NC: SAS Institute.Google Scholar
Singleton, P. W. (1983). A split-root growth system for evaluating the effect of salinity on components of the soybean Rhizobium japonicum symbiosis. Crop Science 23, 259262.Google Scholar
Smalberger, S. A., Singh, U., Chien, S. H., Henao, J. & Wilkens, P. W. (2006). Development and validation of a phosphate rock decision support system. Agronomy Journal 98, 471483.Google Scholar
Somasegaran, P. & Hoben, H. J. (1994). Handbook for Rhizobia: Methods in Legume-Rhizobium Technology. New York: Springer-Verlag.Google Scholar
Tsvetkova, G. E. & Georgiev, G. I. (2003). Effects of phosphorus nutrition on the nodulation, nitrogen fixation and nutrient-use efficiency of Bradyrhizobium japonicum – soybean (Glycine max L. Merr.) symbiosis. Bulgarian Journal of Plant Physiology 29 (Special Issue 2003), 331335.Google Scholar
Valdez, V., Rodier, F., Payre, H. & Drevon, J. J. (1996). Nodule permeability to O2 and nitrogenase linked respiration in bean landraces varying in the tolerance of N2 fixation to P deficiency. Plant Physiology and Biochemistry 34, 871878.Google Scholar
Vance, C. P., Udhe-Stone, C. & Allan, D. L. (2003). Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytologist 157, 423447.CrossRefGoogle ScholarPubMed
Vesterager, J. M., Høgh-Jensen, H. & Nielsen, N. E. (2006). Variation in phosphorus uptake and use efficiencies between pigeonpea genotypes and cowpea. Journal of Plant Nutrition 29, 18691888.Google Scholar
Vincent, J. M. (1970). A Manual for the Practical Study of Root-Nodule Bacteria. IBP Handbook No. 15. Oxford, UK: Blackwell Scientific.Google Scholar
Waluyo, S. H., Lie, T. A. & ‘t Mannetje, L. (2004). Effect of phosphate on nodule primordia of soybean (Glycine max Merrill) in acid soils in rhizotron experiments. Indonesian Journal of Agricultural Science 5, 3744.Google Scholar
Weaver, R. W. & Frederick, L. R. (1972). A new technique for most-probable-number counts of rhizobia. Plant and Soil 36, 219222.Google Scholar
Wissuwa, M., Mazzola, M. & Picard, C. (2009). Novel approaches in plant breeding for rhizosphere-related traits. Plant and Soil 321, 409430.Google Scholar
Woomer, P., Bennett, J. & Yost, R. (1990). Overcoming the inflexibility of most-probable-number procedures. Agronomy Journal 82, 349353.CrossRefGoogle Scholar
Yan, X., Liao, H., Beebe, S. E., Blair, M. W. & Lynch, J. P. (2004). QTL mapping of root hair and acid exudation traits and their relationship to phosphorus uptake in common bean. Plant and Soil 265, 1729.Google Scholar