Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-05T02:38:15.820Z Has data issue: false hasContentIssue false

Estimating nutrient requirements for winter oilseed rape based on QUEFTS analysis

Published online by Cambridge University Press:  16 April 2015

T. REN
Affiliation:
College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, People's Republic of China Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Wuhan 430070, People's Republic of China
J. ZOU
Affiliation:
Colleg of Agriculture, Yangtze University, Jingzhou 434025, People's Republic of China
Y. WANG
Affiliation:
College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, People's Republic of China Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Wuhan 430070, People's Republic of China
X. K. LI
Affiliation:
College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, People's Republic of China Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Wuhan 430070, People's Republic of China
R. H. CONG
Affiliation:
College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, People's Republic of China Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Wuhan 430070, People's Republic of China
J. W. LU*
Affiliation:
College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, People's Republic of China Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Wuhan 430070, People's Republic of China
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

Estimating crop nutrient requirements for winter oilseed rape (Brassica napus L.) is a crucial step in optimizing fertilization to enhance seed yield and improve fertilizer use efficiency. In the present paper, a database composed of 1035 on-farm observations collected from 2005 to 2010 across the major winter oilseed rape production regions in China was used to evaluate internal nutrient efficiencies (kg seed per kg nutrient in plant dry matter); then the Quantitative Evaluation of the Fertility of Tropical Soils (QUEFTS) model for winter oilseed rape was developed to describe the nutrient uptake-yield relationship of oilseed rape over a wide range of environmental conditions and predict the nutrient requirements for a target yield. After excluding observations with low harvest index values, <0·20, and excluding 0·025 of the highest and lowest internal nutrient efficiencies, the minimum and maximum internal nutrient efficiencies were estimated as 13·1 and 31·6 kg seed/kg nitrogen (N), 68·9 and 200·3 kg seed/kg phosphorus (P) and 8·9 and 31·1 kg seed/kg potassium (K), respectively. On the basis of the data settings, the balanced N, P and K uptake at different yield potential levels was calculated using a linear–parabolic–plateau curve with the QUEFTS model. Crop nutrient requirements increased linearly until the yield reached approximately 0·60–0·70 of the potential yield, and 46·0 kg N, 8·0 kg P and 57·1 kg K were found to be needed to produce 1000 kg of seed. The corresponding internal nutrient efficiencies were 21·8, 125·1 and 17·5 kg seed/kg N, P and K, respectively. However, when the target yields approached the yield potential, a decrease in internal nutrient efficiencies was detected in the model. The predicted nutrient requirement values simulated by the QUEFTS model compared well with observed values across a range of conditions. To conclude, the QUEFTS model was shown to be a practical and robust tool for assessing the crop nutrient requirements of winter oilseed rape.

Type
Crops and Soils Research Papers
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barraclough, P. B. (1989). Root growth, macro-nutrient uptake dynamics and soil fertility requirements of a high-yielding winter oilseed rape crop. Plant and Soil 119, 5970.Google Scholar
BBCH (Biologische Bundesanstallt für Land-und Forstwirtschaft) (1997). Growth Stages of Mono-and Dicotyledonous Plants: BBCH Monograph. Berlin: Blackwell Wissenschafts-Verlag.Google Scholar
Berry, P. M., Spink, J., Foulkes, M. J. & White, P. J. (2010). The physiological basis of genotypic differences in nitrogen use efficiency in oilseed rape (Brassica napus L.). Field Crops Research 119, 365373.Google Scholar
Brennan, R. F. & Bolland, M. D. A. (2007 a). Effect of fertiliser phosphorus and nitrogen on the concentrations of oil and protein in grain and the grain yield of canola (Brassica napus L.) grown in south-western Australia. Australian Journal of Experimental Agriculture 47, 984991.Google Scholar
Brennan, R. F. & Bolland, M. D. A. (2007 b). Influence of potassium and nitrogen fertilizer on yield, oil and protein concentration of canola (Brassica napus L.) grain harvested in south-western Australia. Australian Journal of Experimental Agriculture 47, 976983.Google Scholar
Brennan, R. F. & Bolland, M. D. A. (2009). Comparing the nitrogen and potassium requirements of canola and wheat for yield and grain quality. Journal of Plant Nutrition 32, 20082026.Google Scholar
Chen, X. P., Cui, Z. L., Vitousek, P. M., Cassman, K. G., Matson, P. A., Bai, J. S., Meng, Q. F., Hou, P., Yue, S. C., Romheld, V. & Zhang, F. S. (2011). Integrated soil-crop system management for food security. Proceedings of the National Academy of Sciences of the United States of America 108, 63996404.Google Scholar
Chuan, L., He, P., Jin, J., Li, S., Grant, C., Xu, X., Qiu, S., Zhao, S. & Zhou, W. (2013). Estimating nutrient uptake requirements for wheat in China. Field Crops Research 146, 96104.Google Scholar
Cui, Z. L., Chen, X. P., Miao, Y. X., Zhang, F. S., Sun, Q. P., Schroder, J., Zhang, H. L., Li, J. L., Shi, L. W., Xu, J. F., Ye, Y. L., Liu, C. S., Yang, Z. P., Zhang, Q., Huang, S. M. & Bao, D. J. (2008). On-farm evaluation of the improved soil Nmin-based nitrogen management for summer maize in North China Plain. Agronomy Journal 100, 517525.Google Scholar
Diepenbrock, W. (2000). Yield analysis of winter oilseed rape (Brassica napus L.): a review. Field Crops Research 67, 3549.Google Scholar
Fismes, J., Vong, P. C., Guckert, A. & Frossard, E. (2000). Influence of sulfur on apparent N-use efficiency, yield and quality of oilseed rape (Brassica napus L.) grown on a calcareous soil. European Journal of Agronomy 12, 127141.Google Scholar
Gabrielle, B., Denoroy, P., Gosse, G., Justes, E. & Andersen, M. N. (1998). Development and evaluation of a CERES-type model for winter oilseed rape. Field Crops Research 57, 95111.Google Scholar
Guo, J. H., Liu, X. J., Zhang, Y., Shen, J. L., Han, W. X., Zhang, W. F., Christie, P., Goulding, K. W. T., Vitousek, P. M. & Zhang, F. S. (2010). Significant acidification in major Chinese croplands. Science 327, 10081010.Google Scholar
Hay, R. K. M. (1995). Harvest index: a review of its use in plant breeding and crop physiology. Annals of Applied Biology 126, 197216.Google Scholar
Hossain, M. & Singh, V. P. (2000). Fertilizer use in Asian agriculture: implications for sustaining food security and the environment. Nutrient Cycling in Agroecosystems 57, 155169.Google Scholar
Hühn, M., Grosse, F. & Leon, J. (1991). On harvest indices of winter oilseed rape (Brassica nupus L.). Journal of Agronomy and Crop Science 167, 299309.Google Scholar
Janssen, B. H., Guiking, F. C. T., Van Der Eijk, D., Smaling, E. M. A., Wolf, J. & Van Reuler, H. (1990). A system for quantitative evaluation of the fertility of tropical soils (QUEFTS). Geoderma 46, 299318.Google Scholar
Ju, X. T., Kou, C. L., Zhang, F. S. & Christie, P. (2006). Nitrogen balance and groundwater nitrate contamination: comparison among three intensive cropping systems on the North China Plain. Environmental Pollution 143, 117125.CrossRefGoogle ScholarPubMed
Kessel, B., Schierholt, A. & Becker, H. C. (2012). Nitrogen use efficiency in a genetically diverse set of winter oilseed rape (Brassica nupus L.). Crop Science 52, 25462554.Google Scholar
Liu, M., Yu, Z., Liu, Y. & Konijn, N. T. (2006). Fertilizer requirements for wheat and maize in China: the QUEFTS approach. Nutrient Cycling in Agroecosystems 74, 245258.Google Scholar
National Bureau Of Statistics Of China. (2012). China Statistical Yearbook. Beijing: China Statistics Press.Google Scholar
Orlovius, K. (2003). Fertilizing for High Yield and Quality: Oilseed Rape. IPI Bulletin No. 16. Basel, Switzerland: International Potash Research Institute.Google Scholar
Ozer, H. (2003). Sowing date and nitrogen rate effects on growth, yield and yield components of two summer rapeseed cultivars. European Journal of Agronomy 19, 453463.Google Scholar
Pampolino, M. F., Witt, C., Pasuquin, J. M., Johnston, A. & Fisher, M. (2012). Development approach and evaluation of the nutrient expert software for nutrient management in cereal crops. Computers and Electronics in Agriculture 88, 103110.Google Scholar
Rathke, G. W., Christen, O. & Diepenbrock, W. (2005). Effects of nitrogen source and rate on productivity and quality of winter oilseed rape (Brassica napus L.) grown in different crop rotations. Field Crops Research 94, 103113.Google Scholar
Ren, T., Lu, J., Li, H., Zou, J., Xu, H., Liu, X. & Li, X. (2013). Potassium-fertilizer management in winter oilseed-rape production in China. Journal of Plant Nutrition and Soil Science 176, 429440.Google Scholar
Rondanini, D. P., Gomez, N. V., Agosti, M. B. & Miralles, D. J. (2012). Global trends of rapeseed grain yield stability and rapeseed-to-wheat yield ratio in the last four decades. European Journal of Agronomy 37, 5665.Google Scholar
Schulte Auf‘m Erley, G., Behrens, T., Ulas, A., Wiesler, F. & Horst, W. J. (2011). Agronomic traits contributing to nitrogen efficiency of winter oilseed rape cultivars. Field Crops Research 124, 114123.Google Scholar
Setiyono, T. D., Walters, D. T., Cassman, K. G., Witt, C. & Dobermann, A. (2010). Estimating maize nutrient uptake requirements. Field Crops Research 118, 158168.Google Scholar
Sims, J. T., Maguire, R. O., Leytem, A. B., Gartley, K. L. & Pautler, M. C. (2002). Evaluation of Mehlich 3 as an agri-environmental soil phosphorus test for the Mid-Atlantic United States of America. Soil Science Society of America Journal 66, 20162032.Google Scholar
Smaling, E. M. A. & Janssen, B. H. (1993). Calibration of QUEFTS, a model predicting nutrient uptake and yields from chemical soil fertility indices. Geoderma 59, 2144.Google Scholar
Tabi, F. O., Diels, J., Ogunkunle, A. O., Iwuafor, E. N. O., Vanlauwe, B. & Sanginga, N. (2008). Potential nutrient supply, nutrient utilization efficiencies, fertilizer recovery rates and maize yield in northern Nigeria. Nutrient Cycling in Agroecosystems 80, 161172.CrossRefGoogle Scholar
Taylor, A. J., Smith, C. J. & Wilson, I. B. (1991). Effect of irrigation and nitrogen fertilizer on yield, oil content, nitrogen accumulation and water use of canola (Brassica napus L.). Fertilizer Research 29, 249260.CrossRefGoogle Scholar
Thomas, R. L., Sheard, R. W. & Moyer, J. R. (1967). Comparison of conventional and automated procedures for nitrogen, phosphorus, and potassium analysis of plant material using a single digestion. Agronomy Journal 59, 240243.Google Scholar
Thoren, D. & Schmidhalter, U. (2009). Nitrogen status and biomass determination of oilseed rape by laser-induced chlorophyll fluorescence. European Journal of Agronomy 30, 238242.Google Scholar
Van Diepen, C. A., Wolf, J., Van Keulen & Rappoldt, C. (1989). WOFOST: a simulation model of crop production. Soil Use and Management 5, 1624.Google Scholar
Vitousek, P. M., Naylor, R., Crews, T., David, M. B., Drinkwater, L. E., Holland, E., Johnes, P. J., Katzenberger, J., Martinelli, L. A., Matson, P. A., Nziguheba, G., Ojima, D., Palm, C. A., Robertson, G. P., Sanchez, P. A., Townsend, A. R. & Zhang, F. S. (2009). Agriculture. Nutrient imbalances in agricultural development. Science 324, 15191520.Google Scholar
Wang, G. H., Dobermann, A., Witt, C., Sun, Q. Z. & Fu, R. X. (2001). Performance of site-specific nutrient management for irrigated rice in Southeast China. Agronomy Journal 93, 869878.Google Scholar
Wang, W. N., Lu, J. W., Li, Y. S., Zou, J., Su, W., Li, X. K. & Li, Y. C. (2010). Study on fertilization effect and fertilizer contribution rate of different crops at present production conditions. Scientia Agricultura Sinica 43, 39974007.Google Scholar
Wang, Y. (2014). Study on the different responses to N, P, and K fertilizers between direct sown and transplanted winter oilseed rape. Ph.D. Thesis, Huazhong Agricultural University, Wuhan, China.Google Scholar
Wang, Y., Li, X. K., Li, Y. Y., Li, J. F., Xiao, G. B., Zheng, W., Yuan, F. S., Lu, Y. H., Liao, Y. L. & Lu, J. W. (2012). Response of direct-seeding rapeseed to fertilization in fields of red soil different in fertility. Acta Pedologica Sinica 49, 121129.Google Scholar
Witt, C., Dobermann, A., Abdulrachman, S., Gines, H. C., Wang, G. H., Nagarajan, R., Satawatananont, S., Son, T. T., Tan, P. S., Tiem, L. V., Simbahan, G. C. & Olk, D. C. (1999). Internal nutrient efficiencies of irrigated lowland rice in tropical and subtropical Asia. Field Crops Research 63, 113138.Google Scholar
Xu, F. T., Gu, H. H. & Xu, J. (2012). Response of rape to N, P and K fertilizer in Haimen II: fertilizing benefits. Soils 44, 237241.Google Scholar
Yang, Y., Liu, Q., Song, H. X., Guan, C. Y., Rong, X. M. & Peng, J. W. (2012). Effects of different NPK ratios on nutrients absorption, carbon and nitrogen metabolism, and grain yield of rapeseed. Acta Agriculturae Zhejiangensis 24, 99104.Google Scholar
Zhang, F. S., Chen, X. P. & Chen, Q. (2009). Fertiliser Recommendations for Major Crops in China. Beijing: China Agricultural University Press.Google Scholar
Zhang, F. S., Cui, Z., Fan, M., Zhang, W., Chen, X. & Jiang, R. (2011). Integrated soil-crop system management: reducing environmental risk while increasing crop productivity and improving nutrient use efficiency in China. Journal of Environmental Quality 40, 10511057.CrossRefGoogle ScholarPubMed
Zhang, Y., Hou, P., Gao, Q., Chen, X., Zhang, F. & Cui, Z. (2012). On-farm estimation of nutrient requirements for spring corn in North China. Agronomy Journal 104, 14361442.Google Scholar
Zhou, Y., Fitt, B. D. L., Welham, S. J., Gladders, P., Sansford, C. E. & West, J. S. (1999). Effects of severity and timing of stem canker (Leptosphaeria maculans) symptoms on yield of winter oilseed rape (Brassica napus) in the UK. European Journal of Plant Pathology 105, 715728.Google Scholar
Zou, J. (2010). Study on response of winter rapeseed to NPKB fertilization and abundance and deficiency indices of soil nutrients. Ph.D. Thesis, Huazhong Agricultural University, Wuhan, China.Google Scholar
Zou, J., Lu, J. W., Chen, F. & Li, Y. S. (2009). Effect of nitrogen, phosphorus, potassium, and boron fertilizers on yield and profit of rapeseed (Brassica napus L.) in the Yangtze River Basin. Acta Agronomica Sinica 35, 8792.Google Scholar