Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-16T15:00:06.920Z Has data issue: false hasContentIssue false

Environmental impacts of the pork supply chain with regard to farm performance

Published online by Cambridge University Press:  27 June 2014

K. RECKMANN*
Affiliation:
Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, Olshausenstraße 40, 24098 Kiel, Germany
J. KRIETER
Affiliation:
Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, Olshausenstraße 40, 24098 Kiel, Germany
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

Livestock production is increasingly facing consumer concern about the environmental impact of different production systems. In order to provide a detailed insight into the contribution of pork production, a life-cycle assessment (LCA) of average German pork production was performed. In this way, the global warming potential was estimated at 3·22 kg CO2-eq/kg pork, eutrophication at 23·3 g PO4-eq and acidification at 57·1 g SO2-eq. The functional unit was 1 kg pork as a slaughter weight. The analysis aimed at identifying those farm parameters which had most impact on the LCA results. For that purpose, a deterministic pig farm model was developed which reflected all the processes of a pig farm, while focusing on five distinct areas: general farm information, biological performance, basic feed data, manure management and resource use and emissions. In this way, it was possible to vary the level of performance parameters from farrowing (piglet losses and number of piglets born alive per litter) and finishing stage (lean-meat content, daily weight gain, animal losses and feed conversion ratio). The number of piglets born alive, the lean-meat content and the feed conversion ratio were identified as having the greatest influence on the results. In comparison with average pork production, the values of the impact categories increased and decreased by up to 4·7%. The results show that the fertility of sows and the feed management of finishers should be optimized to mitigate environmental impacts at pig farm level.

Type
Climate Change and Agriculture Research Papers
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Basset-Mens, C. & van der Werf, H. M. G. (2005). Scenario-based environmental assessment of farming systems: the case of pig production in France. Agriculture, Ecosystems & Environment 105, 127144.CrossRefGoogle Scholar
Basset-Mens, C., van der Werf, H. M. G., Robin, P., Morvan, T., Hassouna, M., Paillat, J. M. & Vertès, F. (2007). Methods and data for the environmental inventory of contrasting pig production systems. Journal of Cleaner Production 15, 13951405.Google Scholar
British Standard Institution (2008). Guide to PAS 2050. How to Assess the Carbon Footprint of Goods and Services. London, UK: Crown copyright & The Carbon Trust.Google Scholar
Chardon, X., Rigolot, C., Baratte, C., Espagnol, S., Raison, C., Martin-Clouaire, R., Rellier, J.-P., Le Gall, A., Dourmad, J. Y., Piquemal, B., Leterme, P., Paillat, J. M., Delaby, L., Garcia, F., Peyraud, J. L., Poupa, J. C., Morvan, T. & Faverdin, P. (2012). MELODIE: a whole-farm model to study the dynamics of nutrients in dairy and pig farms with crops. Animal 6, 17111721.Google Scholar
CML (2009). CML 2 Baseline 2000. Leiden, The Netherlands: Centre for Environmental Studies (CML), University Leiden.Google Scholar
Curran, M. A., Mann, M. & Norris, G. (2005). The international workshop on electricity data for life cycle inventories. Journal of Cleaner Production 13, 853862.Google Scholar
Dalgaard, R., Halberg, N. & Hermansen, J. E. (2007). Danish Pork Production – An Environmental Assessment. DJF Animal Science 82. Tjele, Denmark: University of Aarhus.Google Scholar
Dämmgen, U. & Hutchings, N. J. (2008). Emissions of gaseous nitrogen species from manure management: a new approach. Environmental Pollution 154, 488497.Google Scholar
de Vries, A. (1989). Selection for production and reproduction traits in pigs. Ph.D. Thesis, Wageningen, the Netherlands: Wageningen Agricultural University.Google Scholar
de Vries, M. & de Boer, I. J. M. (2010). Comparing environmental impacts for livestock products: a review of life cycle assessments. Livestock Science 128, 111.Google Scholar
del Prado, A., Misselbrook, T., Chadwick, D., Hopkins, A., Dewhurst, R. J., Davison, P., Butler, A., Schröder, J. & Scholefield, D. (2011). SIMSDAIRY: a modelling framework to identify sustainable dairy farms in the UK. Framework description and test for organic systems and N fertiliser optimisation. Science of the Total Environment 409, 39934009.Google Scholar
DESTATIS (2013). Statistisches Bundesamt Deutschland: 2012 erstmals seit 1997 weniger Fleisch produziert als im Vorjahr. Wiesbaden, Germany: DESTATIS. Available online from: https://www.destatis.de/DE/PresseService/Presse/Pressemitteilungen/2013/02/PD13_056_413.html (accessed May 2014).Google Scholar
Dourmad, J. Y., Guillou, D. & Noblet, J. (1992). Development of a calculation model for predicting the amount of N excreted by the pig: effect of feeding, physiological stage and performance. Livestock Production Science 31, 95107.Google Scholar
ECOINVENT (2009). Ecoinvent Data v 2.1. Dübendorf, Switzerland: Swiss Centre for Life Cycle Inventories.Google Scholar
FAO (2011). FAOSTAT. Rome: FAO. Available from: http://faostat.fao.org.Google Scholar
Flysjö, A., Cederberg, C., Henriksson, M. & Ledgard, S. (2012). The interaction between milk and beef production and emissions from land use change – critical considerations in life cycle assessment and carbon footprint studies of milk. Journal of Cleaner Production 28, 134142.Google Scholar
Halberg, N., van der Werf, H. M. G., Basset-Mens, C., Dalgaard, R. & de Boer, I. J. M. (2005). Environmental assessment tools for the evaluation and improvement of European livestock production systems. Livestock Production Science 96, 3350.Google Scholar
IPCC (2006). 2006 IPCC guidelines for national greenhouse gas inventories . In Prepared by the National Greenhouse Gas Inventories (Eds Eggleston, H. S., Buendia, L., Miwa, K., Ngara, T. & Tanabe, K.). Kanagawa, Japan: IGES.Google Scholar
ISO (2006 a). ISO 14040 Standard. Environmental Management Life Cycle Assessment: Principles and Framework. Geneva, Switzerland: ISO.Google Scholar
ISO (2006b). ISO 14044 Standard. Environmental Management Life Cycle Assessment: Requirements and Guidelines. Geneva, Switzerland: ISO.Google Scholar
Jacobsen, B. H., Petersen, B. M., Berntsen, J., Boye, C., Sørensen, C. G., Søgard, H. T. & Hansen, J. P. (1998). An integrated economic and environmental farm simulation model. FASSET; Report No. 102. Copenhagen, Denmark: Danish Institute of Agricultural and Fisheries Economics.Google Scholar
Kingston, C., Meyhoff Fry, J. & Aumonier, S. (2009). Scoping Life Cycle Assessment of Pork Production: Final Report. London, UK: Environmental Resources Management.Google Scholar
Kleanthous, A. (2009). Pigs and the Environment: A Report to BPEX. Kenilworth, Warwickshire, UK: BPEX.Google Scholar
Knap, P. W. (2012). Pig breeding for increased sustainability. In Encyclopedia of Sustainability Science and Technology (Ed. Meyers, R. A.), pp. 79728012. New York: Springer Science+Business Media LLC.CrossRefGoogle Scholar
Krieter, J. (1994). Zuchtplanung Beim Schwein (habil.). Kiel, Germany: Christian-Albrechts University Kiel.Google Scholar
Krieter, J. (2001). Computer simulation of costs and benefits of segregated early weaning (SEW) in a vertical pork-production chain. Deutsche Tierärztliche Wochenschrift 108, 303306.Google Scholar
Krieter, J. & Kalm, E. (1989). Growth, feed intake and mature size in Large White and Pietrain pigs. Journal of Animal Breeding and Genetics 106, 300311.Google Scholar
Meul, M., Ginneberge, C., van Middelaar, C. E., de Boer, I. J. M., Fremaut, D. & Haesaert, G. (2012). Carbon footprint of five pig diets using three land use change accounting methods. Livestock Science 149, 215223.Google Scholar
Nguyen, T. L. T., Hermansen, J. E. & Mogensen, L. (2011). Environmental Assessment of Danish Pork. Tjele, Denmark: Aarhus University.Google Scholar
Olesen, J. E., Schelde, K., Weiske, A., Weisbjerg, M. R., Asman, W. A. H. & Djurhuus, J. (2006). Modelling greenhouse gas emissions from European conventional and organic dairy farms. Agriculture, Ecosystems & Environment 112, 207220.Google Scholar
Pré Consultants (2009). Sima Pro LCA Software. Amersfoort, The Netherlands: Pré Consultants.Google Scholar
Reckmann, K., Traulsen, I. & Krieter, J. (2012). Environmental impact assessment – methodology with special emphasis on European pork production. Journal of Environmental Management 107, 102109.Google Scholar
Reckmann, K., Traulsen, I. & Krieter, J. (2013). Life cycle assessment of pork production: a data inventory for the case of Germany. Livestock Science 157, 586596.Google Scholar
Rigolot, C., Espagnol, S., Pomar, C. & Dourmad, J. Y. (2010). Modelling of manure production by pigs and NH3, N2O and CH4 emissions. Part I: animal excretion and enteric CH4, effect of feeding and performance. Animal 4, 14011412.Google Scholar
Rotz, C. A., Montes, F. & Chianese, D. S. (2010). The carbon footprint of dairy production systems through partial life cycle assessment. Journal of Dairy Science 93, 12661282.Google Scholar
Rotz, C. A., Corson, M. S., Chianese, D. S., Montes, F., Hafner, S. D. & Coiner, C. U. (2012). Integrated Farm System Model: Reference Manual. Washington, DC: USDA Agricultural Research Service. Available at: http://www.ars.usda.gov/SP2UserFiles/Place/19020000/ifsmreference.pdf (accessed 29 January 2014).Google Scholar
Salètes, S., Fiorelli, J., Vuichard, N., Cambou, J., Olesen, J. E., Hacala, S., Sutton, M., Fuhrer, J. & Soussana, J. F. (2004). Greenhouse gas balance of cattle breeding farms and assessment of mitigation options. In Greenhouse Gas Emissions from Agriculture. Mitigation Options and Strategies (Eds Kaltschmitt, M. & Weiske, A.), pp. 203208. Leipzig: Institute for Energy and Environment.Google Scholar
SAS® Institute Inc. (2008). User's Guide (release 9·2). Cary, NC: SAS Institute Inc.Google Scholar
Schils, R. L. M., de Haan, M. H. A., Hemmer, J. G. A., van den Pol-Van Dasselaar, A., de Boer, J. A., Evers, A. G., Holshof, G., van Middelkoop, J. C. & Zom, R. L. G. (2007 a). DairyWise, a whole-farm dairy model. Journal of Dairy Science 90, 53345346.Google Scholar
Schils, R. L. M., Olesen, J. E., del Prado, A. & Soussane, J. F. (2007 b). A review of farm level modelling approaches for mitigating greenhouse gas emissions from ruminant livestock systems. Livestock Science 112, 240251.Google Scholar
Shirali, M., Doeschl-Wilson, A., Knap, P. W., Duthie, C., Kanis, E., van Arendonk, J. A. M. & Roehe, R. (2012). Nitrogen excretion at different stages of growth and its association with production traits in growing pigs. Journal of Animal Science 90, 17561765.Google Scholar
Sommer, S. G., Maahn, M., Poulsen, H. D., Hjorth, M. & Sehested, J. (2008). Interactions between phosphorus feeding strategies for pigs and dairy cows and separation efficiency of slurry. Environmental Technology 29, 7580.Google Scholar
Sonesson, U., Cederberg, C. & Berglund, M. (2009). Greenhouse gas emissions in pig meat production: decision support for climate certification. Report 2009: 5. Stockholm, Sweden: Klimatcertifiering för Mat.Google Scholar
SSBSH (2011). Schweinereport 2011. Rendsburg, Germany: Schweinespezialberatung Schleswig-Holstein e.V. & Landwirtschaftskammer Schleswig-Holstein.Google Scholar
Steinfeld, H., Gerber, P., Wassenaar, T., Castel, V., Rosales, M. & de Haan, C. (2006). Livestock's Long Shadow: Environmental Issues and Options. Rome: FAO.Google Scholar
Stephenson, J. (2010). Livestock and Climate Policy: Less Meat or Less Carbon?. Round Table on Sustainable Development. Paris: OECD.Google Scholar
Thomassen, M. A. & de Boer, I. J. M. (2005). Evaluation of indicators to assess the environmental impact of dairy production systems. Agriculture, Ecosystems & Environment 111, 185199.Google Scholar
Vergé, X. P. C., Dyer, J. A., Desjardins, R. L. & Worth, D. (2009). Greenhouse gas emissions from the Canadian pork industry. Livestock Science 121, 92101.Google Scholar
World Bank (2008). World Development Report 2008. Washington, DC: The World Bank.Google Scholar
Supplementary material: File

Reckmann and Krieter Supplementary Material

Supplementary Material

Download Reckmann and Krieter Supplementary Material(File)
File 115.8 KB