Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-23T02:11:55.006Z Has data issue: false hasContentIssue false

Effects of sowing date and sowing rate on plant development and grain yield of quinoa (Chenopodium quinoa) in a temperate environment

Published online by Cambridge University Press:  27 March 2009

J. Risi
Affiliation:
Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
N. W. Galwey
Affiliation:
Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK

Summary

Quinoa produces a cereal-like grain with a higher protein content and a better balanced amino acid composition than the major cereals. It is cultivated at high altitudes in the Andes, and is believed to have potential for temperate regions. In the development of quinoa as an arable break crop, sowing date, sowing rate and row spacing are identified as agronomic variables having a high priority for investigation. The variety Baer, from high latitudes at sea-level in Chile, and the variety Blanca de Junin, from the inter-Andean valleys of Peru, were sown on 25 March, 14 April and 7 May 1982 at spacings between rows of 0·8 and 0·4 m and sowing rates within rows of 0·2, 0·4 and 0·6 g/m, at Cambridge, England. These varieties were chosen for their strongly contrasting origins and plant types. In another experiment sown on 15 March 1984, Blanca de Junin was replaced by another valley variety, Amarilla de Marangani, somewhat better adapted for cultivation in England. Between-row spacings of 0·4 and 0·2 m, and sowing rates of 15, 20 and 30 kg seed/ha were used. Weed competition was more intense after later sowings, causing the plots sown in May to be abandoned. At the higher sowing rates, plants were shorter, a higher proportion were stunted, branching was reduced and maturity was earlier. These effects were more marked in the valley varieties, particularly Blanca de Junin. Increases in within-row density caused greater increases in competition effects than corresponding reductions in row width, except for the effect on the proportion of branched plants. The highest grain yield, 6·96 t/ha, was obtained with Baer sown in March in rows 0·2 m apart at 20 kg seed/ha. However, Amarilla de Marangani produced a higher yield at 30 kg seed/ha than at 20 kg seed/ha, which is surprising since valley varieties are normally sown with low target population densities or in intercrop, and Amarilla de Marangani was, in other respects, less tolerant of competition than Baer. The implications of these results for the cultivation of quinoa in mechanized farming systems, both in temperate and in highland tropical regions, are discussed.

Type
Crops and Soils
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aguirre, L. & Tapia, M. E. (1982). Estudio sobre quinuas dc valle. In Tercer Congreso International sobre Cultivos Andinos, pp. 5561. La Paz, Bolivia: Instituto Boliviano de Tecnologia Agropecuaria, Instituto Interamericano de Ciencias Agricolas.Google Scholar
Alvarez, M. (1990). Herbicidas. In Quinua. Hacia su cullivo commercial (Ed. Wahli, C.,), pp. 6168. Quito, Ecuador: Latinreco SA.Google Scholar
Aparicio, E. (1977). Influencia de épocas de siembra sobre el rendimiento en tres variedades de quinua (Chenopodium quinoa Willd.). Thesis, Universidad Nacional Técnica del Altiplano, Puno, Peru.Google Scholar
Bornas, E. A. (1977). Respuesta de la quinua (Chenopodium quinoa Willd.) variedades Sajama y Kanccolla a la profundidad de la siembra en cualro closes texturales de suelo. Thesis, Universidad Nacional Técnica del Altiplano, Puno, Peru.Google Scholar
CCanahua, A. (1977). Observaciones del comportamiento de quinua a la sequia. In Primer Congreso Iniernacional sobre Culiivos Andinos, pp. 390392. Ayacucho, Peru: Universidad Nacional San Cristobal de Huamanga & Instituto Interamericano de Ciencias Agricolas.Google Scholar
Draper, N. R. & Smith, H. (1981). Applied Regression Analysis, 2nd edn. Chichester, UK: John Wiley.Google Scholar
Etchevers, J. & Avila, P. (1979). Factores que afectan el crecimiento de quinua (Chenopodium quinoa) en el centrosur de Chile. 10th Latin American Meeting of Agricultural Science.Google Scholar
Galwey, N. W. (1989). Exploited plants. Quinoa. Biologist 36, 267274.Google Scholar
Junge, I., Cerda, P. & Alid, K. (1975). Lupino y quinoa, estado actual de los conocimientos y de las investigaciones sobre su empleo en alimentación humana. Concepción, Chile: Departamento de Ingeneria Quimica, Universidad de Concepción.Google Scholar
Lescano, J. L. (1981). Cultivo de la Quinua. Puno, Peru: Centro de Investigaciones en Cultivos Andinos, Universidad Nacional Técnica del Altiplano.Google Scholar
Lewis, G. E. & Knight, C. W. (1982). Rapeseed response to seeding rate, row spacing and nitrogen application. Agroborealis 14, 5051.Google Scholar
Montenegro, B. C. (1976). Investigatión sobre la quinua Dulce de Quitopamba. In Primera Reunión Binacional sobre la Planificación de la Producción de la Quinua, pp. 4756. Pasto, Colombia: Comité Interinstitucional Colombiano de la Quinua, Ministerio de Salud Público & Instituto Colombiano de Bienestar Familiar.Google Scholar
Narrea, A. (1976). Cultivo de la Quinua. Boletín, Dirreción General de Producción, Ministerio de Alimentación, Lima, No. 5.Google Scholar
Rea, J., Tapia, M. & Mujica, A. (1979). Prácticas agronómicas. In Quinua y Kañiwa. Cultivos Andinos (Ed. Tapia, M. E.), pp. 83120. Serie Libros y Materiales Educativos No. 49. Bogotá, Colombia: Instituto Interamericano de Ciencias Agricolas.Google Scholar
Risi, J. J. M. (1986). Adaptation of the Andean grain crop quinoa (Chenopodium quinoa Willd.) for cultivation in Britain. PhD thesis, University of Cambridge.Google Scholar
Risi, J. & Galwey, N. W. (1984). The Chenopodium grains of the Andes: Inca crops for modern agriculture. In Advances in Applied Biology, vol. 10 (Ed. Coaker, T. H.), pp. 145216. London: Academic Press.Google Scholar
Risi, J. & Galwey, N. W. (1989). The pattern of genetic diversity in the Andean grain crop quinoa (Chenopodium quinoa Willd.). II. Multivariate methods. Euphytica 41, 135145.CrossRefGoogle Scholar
Simmonds, N. W. (1965). The grain chenopods of the tropical American highlands. Economic Botany 19, 223235.CrossRefGoogle Scholar
Tapia, M. E., Mujica, A. & Canahua, A. (1980). Origen distributión geográfica y sistemas de producción en quinua. In Primera Renunión sobre Genética y Filomejoramiento de la Quinua, pp. A1A8. Puno, Peru: Universidad Nacional Técnica del Altiplano, Instituto Boliviano de Tecnologia Agropecuaria, Instituto Interamericano de Ciencias Agricolas & Centro de Investigación Internacional para el Desarrollo.Google Scholar
Triboli, A. M. & Röbelin, M. (1983). Influence de la densité et de la fertilisation azotée sur le rendement et les composants du rendement du colza d'hiver. In 6th International Rapeseed Conference, Paris, France, p. 298.Google Scholar