Article contents
Effects of soil compaction in potato (Solanum tuberosum) crops
Published online by Cambridge University Press: 22 February 2007
Summary
Since many soils used for growing potatoes in the UK are likely to be close to their plastic limit for cultivation during early spring, there exists the potential for soil compaction to occur during planting which will restrict root penetration. A series of experiments showed that soil compaction delayed emergence, reduced rate of leaf appearance and ground cover expansion, shortened canopy cover duration and restricted light interception, which combined to reduce tuber yield. Rooting density and maximum depth of rooting were reduced, particularly where compaction was shallow. In some soils, irrigation helped alleviate some of the effects of compaction but in others it exacerbated their severity. Using a cone penetrometer, relationships between rate of root penetration and soil resistance (Ω) were established from a number of experiments and replicated blocks in commercial fields and an overall relationship of the form y=16·3–4·08Ω mm/day was produced. Root penetration rates of c. 20 mm/day were measured in the intensively-cultivated ridge zone but growth rates were halved at a Ω of 1·5 MPa. A survey of 602 commercial fields showed that two thirds of fields had Ωs ⩾3 MPa (where root growth rates would be <2 mm/day) within the top 0·55 m of the soil profile. Thus, rooting depth is likely to be considerably shallower than desirable and lead to inefficiency of water and nutrient utilization. The use of powered cultivators to separate stones and clods from beds or ridges and produce a fine seedbed is now almost universally adopted in the UK. However, the system is both time and energy inefficient and increases the risk of creating soil compaction, particularly at shallow depths. All cultivation equipment has been shown to cause compaction and it is suggested that the consequences of the shortening of the growing season from delaying planting by a few days to allow the soil to dry are far less than the yield and quality losses caused by compaction.
- Type
- Crops and Soils
- Information
- Copyright
- Copyright © Cambridge University Press 2007
References
REFERENCES
- 51
- Cited by