Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T02:13:40.811Z Has data issue: false hasContentIssue false

Effects of different sources of forage in high-concentrate diets on fermentation parameters, ruminal biohydrogenation and microbiota in Nellore feedlot steers

Published online by Cambridge University Press:  02 June 2016

J. D. MESSANA*
Affiliation:
UNESP – Univ. Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Departamento de Zootecnia, Jaboticabal, São Paulo, Brazil
A. L. E. G. F. CARVALHO
Affiliation:
UNESP – Univ. Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Departamento de Zootecnia, Jaboticabal, São Paulo, Brazil
A. F. RIBEIRO
Affiliation:
UNESP – Univ. Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Departamento de Zootecnia, Jaboticabal, São Paulo, Brazil
G. FIORENTINI
Affiliation:
UNESP – Univ. Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Departamento de Zootecnia, Jaboticabal, São Paulo, Brazil
P. S. CASTAGNINO
Affiliation:
UNESP – Univ. Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Departamento de Zootecnia, Jaboticabal, São Paulo, Brazil
Y. T. GRANJA-SALCEDO
Affiliation:
UNESP – Univ. Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Departamento de Zootecnia, Jaboticabal, São Paulo, Brazil
A. V. PIRES
Affiliation:
USP – Universidade de São Paulo, Escola Superior de Agricultura ‘Luiz de Queiroz’, Departamento de Zootecnia, Piracicaba, São Paulo, Brazil
T. T. BERCHIELLI
Affiliation:
UNESP – Univ. Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Departamento de Zootecnia, Jaboticabal, São Paulo, Brazil Membro INCT/CA – UFV – Departamento de Zootecnia, Viçosa, Minas Gerais, Brazil
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

Modifying the extent of fatty acid (FA) biohydrogenation (BH) in the rumen through diet formulation is an effective strategy for changing the content of unsaturated FAs (USFAs) in meat. The present study investigated the effects of different sources of forage in high-concentrate diets on intake, digestibility, rumen fermentation, ruminal BH, duodenal flow of FAs and rumen microbiota in Nellore steers. Intake of neutral detergent fibre (NDF) was higher in animals fed with maize silage (MS) than in those fed with sugar cane (SC) and sugar cane bagasse (SB). Higher digestibility of dry matter and NDF was found in animals fed with MS than in those fed with the other diets. In addition, higher crude protein digestibility was observed in animals fed with sugar cane bagasse than in those fed with SC. Non-fibre carbohydrate (NFC) digestibility was higher in animals fed with sugar cane than in those fed with the other diets. Intake of total and individual FAs such as C18 : 1 cis-9, C18 : 2, and C18 : 3 was similar between animals fed with MS and SB, but decreased in animals fed with SC. Diets containing MS and SB showed higher total digestibility of saturated FAs (SFAs) and USFAs, respectively and total FAs and ruminal BH of C18 : 1 and USFA. Intestinal digestibility of overall FAs did not differ among treatments, except for C18 : 3, which increased in animals fed with SC and SB. The profile of FAs in duodenal digesta and faecal outputs did not differ among treatments. However, the flow of NDF was higher in animals fed with SC than in those fed with MS and SB. Animals fed with SB showed higher values of pH than those fed with MS and SC. Animals fed with SC showed lower values of ammonia-nitrogen. Protozoan counts were only influenced by diet for species that belonged to the genera Dasytricha and Isotricha. Populations of fibrolytic bacteria (Ruminococus flavefaciens, Ruminococus albus and Fibrobacter succinogenes) were similar among diets. Populations of Selenomonas ruminantium increased 2·5 and 5 times in animals fed with MS when compared with those fed with SC and SB, respectively. The use of MS increased intake and digestibility of NDF, and the use of SC decreased ruminal BH of total USFA without changing the flow of FAs to the duodenum. Thus, different sources of forage in high-concentrate diets do not modify the duodenal flow of USFA or fibrolytic bacteria. This must be taken into account when formulating diets to modulate ruminal upsets without altering intake.

Type
Animal Research Papers
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alderman, G. (1993). Energy and Protein Requirements of Ruminants: an Advisory Manual prepared by the AFRC Technical Committee on Responses to Nutrients. Wallingford, UK: CAB International.Google Scholar
AOAC (Association of Official Analytical Chemistry) (1990). Official Methods of Analysis, 15th edn. Arlington, VA: AOAC International.Google Scholar
Bach, A., Calsamiglia, S. & Stern, M. D. (2005). Nitrogen metabolism in the rumen. Journal of Dairy Science 88 (Suppl.), E9E21.Google Scholar
Barbosa, A. M., Valadares, R. F. D., Valadares Filho, S. C., Pina, D. S., Detmann, E. & Leão, M. I. (2011). Endogenous fraction and urinary recovery of purine derivatives obtained by different methods in Nellore cattle. Journal of Animal Science 89, 510519.Google Scholar
Casali, A. O., Detmann, E., Valadares Filho, S. C., Pereira, J. C., Henriques, L. T., De Freitas, S. G. & Paulino, M. F. (2008). Influence of incubation time and particles size on indigestible compounds contents in cattle feeds and feces obtained by in situ procedures. Revista Brasileira de Zootecnia 37, 335342.CrossRefGoogle Scholar
Chamberlain, D. G., Thomas, P. C., Wilson, W., Newbold, C. J. & Macdonald, J. C. (1985). The effects of carbohydrate supplements on ruminal concentrations of ammonia in animals given diets of grass silage. Journal of Agricultural Science, Cambridge 104, 331340.Google Scholar
Corrêa, C. E. S., Pereira, M. N., de Oliveira, S. G. & Ramos, M. H. (2003). Performance of Holstein cows fed sugarcane or corn silages of different grain textures. Scientia Agricola 60, 621629.CrossRefGoogle Scholar
D'Agosto, M. T. & Carneiro, M. E. (1999). Evaluation of lugol solution used for counting rumen ciliates. Revista Brasileira de Zoologia 16, 725729.Google Scholar
Defoor, P. J., Galyean, M. L., Salyer, G. B., Nunnery, G. A. & Parsons, C. H. (2002). Effects of roughage source and concentration on intake and performance by finishing heifers. Journal of Animal Science 80, 13951404.Google Scholar
Dehority, B. A. (1984). Evaluation of subsampling and fixation procedures used for counting rumen protozoa. Applied and Environmental Microbiology 48, 182185.Google Scholar
Denman, S. E. & McSweeney, C. S. (2006). Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiology Ecology 58, 572582.Google Scholar
Denman, S. E., Tomkins, N. W. & Mcsweeney, C. S. (2007). Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane. FEMS Microbiology Ecology 62, 313322.Google Scholar
de Oliveira, S. G., Berchielli, T. T., Pedreira, M. S., Primavesi, O., Frighetto, R. & Lima, M. A. (2007). Effect of tannin levels in sorghum silage and concentrate supplementation on apparent digestibility and methane emission in beef cattle. Animal Feed Science and Technology 135, 236248.Google Scholar
Devries, T. J., Beauchemin, K. A. & Von Keyserlingk, M. A. G. (2007). Dietary forage concentration affects the feed sorting behavior of lactating dairy cows. Journal of Dairy Science 90, 55725579.Google Scholar
Devries, T. J., Dohme, F. & Beauchemin, K. A. (2008). Repeated ruminal acidosis challenges in lactating dairy cows at high and low risk for developing acidosis: feed sorting. Journal of Dairy Science 91, 39583967.Google Scholar
Devries, T. J., Schwaiger, T., Beauchemin, K. A. & Penner, G. B. (2014). Impact of severity of ruminal acidosis on feed-sorting behaviour of beef cattle. Animal Production Science 54, 12381242.Google Scholar
Dewhurst, R. J., Evans, R. T., Scollan, N. D., Moorby, J. M., Merry, R. J. & Wilkins, R. J. (2003). Comparisons of grass and legume silages for milk production. 2. In vivo and in sacco evaluations of rumen function. Journal of Dairy Science 86, 26122621.Google Scholar
Dewhurst, R. J., Shingfield, K. J., Lee, M. R. F. & Scollan, N. D. (2006) Increasing the concentrations of beneficial polyunsaturated fatty acids in milk produced by dairy cows in high-forage systems. Animal Feed Science and Technology 131, 168206.Google Scholar
Fenner, H. (1965). Method for determining total volatile bases in rumen fluid by steam distillation. Journal of Dairy Science 48, 249251.Google Scholar
Galyean, M. L. & Defoor, P. J. (2003). Effects of roughage source and level on intake by feedlot cattle. Journal of Animal Science 81 (E Suppl. 2), E8E16.Google Scholar
Goering, H. K. & Van Soest, P. J. (1970). Forage Fiber Analyses (Apparatus, Reagents, Procedures, and Some Applications). Agriculture Handbook 379. Washington, DC: USDA–ARS.Google Scholar
Goulart, R. S. & Nussio, L. G. (2011). Exigência de fibra fisicamente efetiva para bovinos confinados. In Proc. VII Simpósio de pecuária de corte e II, pp. 111154. Lavras, Brazil: NEPEC.Google Scholar
Harvatine, K. J. & Allen, M. S. (2006). Effects of fatty acid supplements on ruminal and total tract nutrient digestion in lactating dairy cows. Journal of Dairy Science 89, 10921103.Google Scholar
Henrique, W., Beltrame Filho, J. A., Leme, P. R., Lanna, D. P. D., Alleoni, G. F., Coutinho Filho, J. L. V. & Sampaio, A. A. M. (2007). Avaliação da silagem de grãos de milho úmido com diferentes volumosos para tourinhos em terminação: Desempenho e características de carcaça. Revista Brasileira de Zootecnia 36, 183190.CrossRefGoogle Scholar
Herdmann, A., Martin, J., Nuernberg, G., Dannenberger, D. & Nuernberg, K. (2010). Effect of dietary n-3 and n-6 PUFA on lipid composition of different tissues of German holstein bulls and the fate of bioactive fatty acids during processing. Journal of Agricultural and Food Chemistry 58, 83148321.CrossRefGoogle ScholarPubMed
Hoffmann, M. (1990). Tierfütterung. Berlin: Deutscher Landwirtschaftsverlag.Google Scholar
Hook, S. E., Steele, M. A., Northwood, K. S., Dijkstra, J., France, J., Wright, A. D. G. & McBride, B. W. (2011). Impact of subacute ruminal acidosis (SARA) adaptation and recovery on the density and diversity of bacteria in the rumen of dairy cows. FEMS Microbiology Ecology 78, 275284.Google Scholar
Hristov, A. N., Ivan, M., Rode, L. M. & McAllister, T. A. (2001). Fermentation characteristics and ruminal ciliate protozoal populations in cattle fed medium- or high-concentrate barley-based diets. Journal of Animal Science 79, 515524.Google Scholar
Kalscheur, K. F., Teter, B. B., Piperova, L. S. & Erdman, R. A. (1997). Effect of dietary forage concentration and buffer addition on duodenal flow of trans-C18:1 fatty acids and milk fat production in dairy cows. Journal of Dairy Science 80, 21042114.Google Scholar
Khafipour, E., Li, S., Plaizier, J. C. & Krause, D. O. (2009). Rumen microbiome composition determined using two nutritional models of subacute ruminal acidosis. Applied and Environmental Microbiology 75, 71157124.Google Scholar
Kucuk, O., Hess, B. W., Ludden, P. A. & Rule, D. C. (2001). Effect of forage:concentrate ratio on ruminal digestion and duodenal flow of fatty acids in ewes. Journal of Animal Science 79, 22332240.Google Scholar
Lechartier, C. & Peyraud, J. L. (2010). The effects of forage proportion and rapidly degradable dry matter from concentrate on ruminal digestion in dairy cows fed corn silage-based diets with fixed neutral detergent fiber and starch contents. Journal of Dairy Science 93, 666681.CrossRefGoogle ScholarPubMed
Loor, J. J., Herbein, J. H. & Jenkins, T. C. (2002). Nutrient digestion, biohydrogenation, and fatty acid profiles in blood plasma and milk fat from lactating Holstein cows fed canola oil or canolamide. Animal Feed Science and Technology 97, 6582.CrossRefGoogle Scholar
Loor, J. J., Ueda, K., Ferlay, A., Chilliard, Y. & Doreau, M. (2004). Biohydrogenation, duodenal flow, and intestinal digestion of trans fatty acids and conjugated linoleic acids in response to dietary forage: concentrate ratio and linseed oil in dairy cows. Journal of Dairy Science 87, 24722485.Google Scholar
Magalhães, A. L. R., Campos, J. M. S., Cabral, L. S., Mello, R., de Freitas, J. A., Torres, R. A., Valadares Filho, S. C. & de Assis, A. J. (2006). Cana-de-açúcar em substituição à silagem de milho em dietas para vacas em lactação: parâmetros digestivos e ruminais. Revista Brasileira de Zootecnia 35, 591599.Google Scholar
Menezes, G. C. C., Valadares Filho, S. C., Magalhães, F. A., Valadares, R. F. D., Mariz, L. D., Detmann, E., Pereira, O. G. & Leão, M. I. (2011). Total and partial digestibility, rates of digestion obtained with rumen evacuation and microbial protein synthesis in bovines fed fresh or ensiled sugar cane and corn silage. Revista Brasileira de Zootecnia 40, 11041113.CrossRefGoogle Scholar
Mertens, D. R. (2001). Physical effective NDF and its use in formulating dairy rations. In Simpósio Internacional em Bovinos de Leite. 2. Lavras, Anais. pp. 25–36. Lavras, Brazil: UFLA-FAEPE.Google Scholar
Murphy, M., Udén, P., Palmquist, D. L. & Wiktorsson, H. (1987). Rumen and total diet digestibilities in lactating cows fed diets containing full-fat rapeseed. Journal of Dairy Science 70, 15721582.Google Scholar
Nagaraja, T. G. & Titgemeyer, E. C. (2007). Ruminal acidosis in beef cattle: the current microbiological and nutritional outlook. Journal of Dairy Science 90(Suppl. 1), E17E38.Google Scholar
National Research Council (2001). Nutrient Requirements of Dairy Cattle, 7. rev. edn. Washington, DC: National Academy Press.Google Scholar
Or-Rashid, M. M., Wright, T. C. & McBride, B. W. (2009). Microbial fatty acid conversion within the rumen and the subsequent utilization of these fatty acids to improve the healthfulness of ruminant food products. Applied Microbiology and Biotechnology 84, 10331043.CrossRefGoogle ScholarPubMed
Ørskov, E. R. & Hovell, F. D. D. (1978). Rumen digestion of hay (measured with dacron bags) by cattle given sugar cane or pangola hay. Tropical Animal Production 3, 911.Google Scholar
Owens, F. N., Secrist, D. S., Hill, W. J. & Gill, D. R. (1998). Acidosis in cattle: a review. Journal of Animal Science 76, 275286.Google Scholar
Pereira, E. S., Queiroz, A. C., Paulino, M. F., Cecon, P. R., Valadares Filho, S. C., Miranda, L. F., Fernandes, A. M. & Cabral, L. S. (2000). Determinação das frações protéicas e de carboidratos e taxas de degradação in vitro da cana-de-açúcar, da cama de frango e do farelo de algodão. Revista Brasileira de Zootecnia 29, 18871893.Google Scholar
Petri, R. M., Forster, R. J., Yang, W., McKinnon, J. J. & McAllister, T. A . (2012). Characterization of rumen bacterial diversity and fermentation parameters in concentrate fed cattle with and without forage. Journal of Applied Microbiology 112, 11521162.Google Scholar
Piatkowski, B., Gürtler, H. & Voigt, J. (1990). Grundzüge der Wiederkäuer–Ernährung. Jena: Gustav Fischer Verlag.Google Scholar
Rotta, P. P., Valadares Filho, S. C., Engle, T. E., Silva, L. C., Sathler, D. F. T., Prado, I. N., Bonafé, E. G., Zawadzki, F. & Visentainer, J. V. (2014). The impact of dietary sugar cane addition to finishing diets on performance, apparent digestibility, and fatty acid composition of Holstein× Zebu bulls. Journal of Animal Science 92, 26412653.CrossRefGoogle Scholar
Russell, J. B. & Dombrowski, D. B. (1980). Effect of pH on the efficiency of growth by pure cultures of rumen bacteria in continuous culture. Applied and Environmental Microbiology 39, 604610.Google Scholar
Ryle, M. & Ørskov, E. R. (1987). Rumen ciliates and tropical feeds. World Animal Review 64, 2130.Google Scholar
Saleem, F., Ametaj, B. N., Bouatra, S., Mandal, R., Zebeli, Q., Dunn, S. M. & Wishart, D. S. (2012). A metabolomics approach to uncover the effects of grain diets on rumen health in dairy cows. Journal of Dairy Science 95, 66066623.Google Scholar
Saro, C., Ranilla, M. J., Cifuentes, R., Rosselló-Mora, R. & Carro, M. D. (2014). Technical note: comparison of automated ribosomal intergenic spacer analysis and denaturing gradient gel electrophoresis to assess bacterial diversity in the rumen of sheep. Journal of Animal Science 92, 10831088.Google Scholar
Shin, J. H., Wang, D., Kim, S. C., Adesogan, A. T. & Staples, C. R. (2012). Effects of feeding crude glycerine on performance and ruminal kinetics of lactating Holstein cows fed corn silage-or cottonseed hull-based, low-fiber diets. Journal of Dairy Science 95, 40064016.Google Scholar
Shingfield, K. J. & Wallace, R. J. (2014). Synthesis of conjugated linoleic acid in ruminants and humans. In Conjugated Linoleic Acids and Conjugated Vegetable Oils (Eds Sels, B. & Philippaerts, A.), pp. 165. RSC Catalysis Series no. 9. Cambridge, UK: Royal Society of Chemistry.Google Scholar
Shingfield, K. J., Ahvenjarvi, S., Toivonen, V., Arola, A., Nurmela, K. V. V., Huhtanen, P. & Griinari, J. M. (2003). Effect of dietary fish oil on biohydrogenation of fatty acids and milk fatty acid content in cows. Animal Science 77, 165179.Google Scholar
Shingfield, K. J., Lee, M. R. F., Humphries, D. J., Scollan, N. D., Toivonen, V., Beever, D. E. & Reynolds, C. K. (2011). Effect of linseed oil and fish oil alone or as an equal mixture on ruminal fatty acid metabolism in growing steers fed maize silage-based diets. Journal of Animal Science 89, 37283741.Google Scholar
Tafaj, M., Kolaneci, V., Junck, B., Maulbetsch, A., Steingass, H. & Drochner, W. (2005). Influence of fiber content and concentrate level on chewing activity, ruminal digestion, digesta passage rate and nutrient digestibility in dairy cows in late lactation. Asian-Australasian Journal of Animal Sciences 18, 11161124.CrossRefGoogle Scholar
Tafaj, M., Zebeli, Q., Maulbetsch, A., Steingass, H. & Drochner, W. (2006). Effects of fibre concentration of diets consisting of hay and slowly degradable concentrate on ruminal fermentation and digesta particle size in mid-lactation dairy cows. Archives of Animal Nutrition 60, 254266.Google Scholar
Taylor, C. C. & Allen, M. S. (2005). Corn grain endosperm type and brown midrib 3 corn silage: site of digestion and ruminal digestion kinetics in lactating cows. Journal of Dairy Science 88, 14131424.Google Scholar
Tempelman, R. J. (2004). Experimental design and statistical methods for classical and bioequivalence hypothesis testing with an application to dairy nutrition studies. Journal of Animal Science 82(e Suppl.), E162E172.Google ScholarPubMed
Troegeler-Meynadier, A., Bret-Bennis, L. & Enjalbert, F. (2006). Rates and efficiencies of reactions of ruminal biohydrogenation of linoleic acid according to pH and polyunsaturated fatty acids concentrations. Reproduction Nutrition Development 46, 713724.Google Scholar
Van Nevel, C. & Demeyer, D. (1996). Influence of pH on lipolysis and biohydrogenation of soybean oil by rumen contents in vitro . Reproduction Nutrition Development 36, 5363.Google Scholar
Van Soest, P. J. & Robertson, J. B. (1985). Analysis of Forages and Fibrous Foods. Ithaca, NY: Cornell University Press.Google Scholar
Van Soest, P. J., Robertson, J. B. & Lewis, B. A. (1991). Methods for dietary fiber, and nonstarch polysaccharides in relations to animal nutrition. Journal of Dairy Science 74, 35833597.Google Scholar
Van Wezemael, L., Ueland, O., Rødbotten, R., de Smet, S., Scholderer, J. & Verbeke, W. (2012). The effect of technology information on consumer expectations and liking of beef. Meat Science 90, 444450.Google Scholar
Xu, L., Jin, Y., He, M. L., Li, C., Beauchemin, K. A. & Yang, W. Z. (2014). Effects of increasing levels of corn dried distillers grains with solubles and monensin on ruminal biohydrogenation and duodenal flows of fatty acids in beef heifers fed high-grain diets. Journal of Animal Science 92, 10891098.Google Scholar
Zebeli, Q., Metzler-Zebeli, B. U. & Ametaj, B. N. (2012 a). Meta-analysis reveals threshold level of rapidly fermentable dietary concentrate that triggers systemic inflammation in cattle. Journal of Dairy Science 95, 26622672.Google Scholar
Zebeli, Q., Aschenbach, J. R., Tafaj, M., Boguhn, J., Ametaj, B. N. & Drochner, W. (2012 b). Invited review: role of physically effective fiber and estimation of dietary fiber adequacy in high-producing dairy cattle. Journal of Dairy Science 95, 10411056.Google Scholar
Zened, A., Troegeler-Meynadier, A., Nicot, M. C., Combes, S., Cauquil, L., Farizon, Y. & Enjalbert, F. (2011). Starch and oil in the donor cow diet and starch in substrate differently affect the in vitro ruminal biohydrogenation of linoleic and linolenic acids. Journal of Dairy Science 94, 56345645.Google Scholar